Reinforcement learning (RL) operating on attack graphs leveraging cyber terrain principles are used to develop reward and state associated with determination of surveillance detection routes (SDR). This work extends previous efforts on developing RL methods for path analysis within enterprise networks. This work focuses on building SDR where the routes focus on exploring the network services while trying to evade risk. RL is utilized to support the development of these routes by building a reward mechanism that would help in realization of these paths. The RL algorithm is modified to have a novel warm-up phase which decides in the initial exploration which areas of the network are safe to explore based on the rewards and penalty scale factor.
translated by 谷歌翻译
由于文件传达了丰富的人类知识,并且通常存在于企业中,因此建筑文档的对话系统已经越来越兴趣。其中,如何理解和从文档中检索信息是一个具有挑战性的研究问题。先前的工作忽略了文档的视觉属性,并将其视为纯文本,从而导致不完整的方式。在本文中,我们提出了一个布局感知文档级信息提取数据集,以促进从视觉上丰富文档(VRD)中提取结构和语义知识的研究,以在对话系统中产生准确的响应。 Lie包含来自4,061页的产品和官方文件的三个提取任务的62K注释,成为我们最大的知识,成为最大的基于VRD的信息提取数据集。我们还开发了扩展基于令牌的语言模型的基准方法,以考虑像人类这样的布局功能。经验结果表明,布局对于基于VRD的提取至关重要,系统演示还验证了提取的知识可以帮助找到用户关心的答案。
translated by 谷歌翻译
开放信息提取(OpenIE)促进了独立于域的大型语料库的关系事实的发现。该技术很好地适合许多开放世界的自然语言理解场景,例如自动知识基础构建,开放域问答和明确的推理。由于深度学习技术的快速发展,已经提出了许多神经开放式体系结构并取得了可观的性能。在这项调查中,我们提供了有关状态神经开放模型的广泛概述,其关键设计决策,优势和劣势。然后,我们讨论当前解决方案的局限性以及OpenIE问题本身的开放问题。最后,我们列出了最近的趋势,这些趋势可以帮助扩大其范围和适用性,从而为Openie的未来研究设定了有希望的方向。据我们所知,本文是有关此特定主题的第一篇评论。
translated by 谷歌翻译
我们发现Mask2Former还可以在视频实例分段上实现最先进的性能,而无需修改架构,丢失甚至培训管道。在本报告中,我们通过直接预测3D分段卷来显示通用图像分割体系结构通过直接预测3D分段卷来概括到视频分段。具体而言,Mask2Former在Youtubevis-2021上为Youtubevis-2019和52.6 AP设置了新的60.4 AP最先进的。鉴于其在图像分割中的多功能性,我们认为蒙版2格相符也能够处理视频语义和Panoptic分割。我们希望这将使最先进的视频分段研究更可访问,并更加关注设计通用图像和视频分段架构。
translated by 谷歌翻译
图像分割是关于使用不同语义的分组像素,例如类别或实例成员身份,其中每个语义选择定义任务。虽然只有每个任务的语义不同,但目前的研究侧重于为每项任务设计专业架构。我们提出了蒙面关注掩模变压器(Mask2Former),这是一种能够寻址任何图像分段任务(Panoptic,实例或语义)的新架构。其关键部件包括屏蔽注意,通过限制预测掩模区域内的横向提取局部特征。除了将研究工作减少三次之外,它还优于四个流行的数据集中的最佳专业架构。最值得注意的是,Mask2Former为Panoptic semonation(Coco 57.8 PQ)设置了新的最先进的,实例分段(Coco上50.1 AP)和语义分割(ADE20K上的57.7 miou)。
translated by 谷歌翻译
现代方法通常将语义分割标记为每个像素分类任务,而使用替代掩码分类处理实例级分割。我们的主要洞察力:掩码分类是足够的一般,可以使用完全相同的模型,丢失和培训过程来解决语义和实例级分段任务。在此观察之后,我们提出了一个简单的掩模分类模型,该模型预测了一组二进制掩码,每个模型与单个全局类标签预测相关联。总的来说,所提出的基于掩模分类的方法简化了语义和Panoptic分割任务的有效方法的景观,并显示出优异的经验结果。特别是,当类的数量大时,我们观察到掩码形成器优于每个像素分类基线。我们的面具基于分类的方法优于当前最先进的语义(ADE20K上的55.6 miou)和Panoptic Seation(Coco)模型的Panoptic Seationation(52.7 PQ)。
translated by 谷歌翻译
我们提出了一个令人尴尬的简单点注释方案,以收集弱监督,例如分割。除了边界框外,我们还收集了在每个边界框内均匀采样的一组点的二进制标签。我们表明,为完整的掩模监督开发的现有实例细分模型可以通过我们的方案收集基于点的监督而无缝培训。值得注意的是,接受了可可,Pascal VOC,CityScapes和LVI的面具R-CNN,每个物体只有10个带注释的随机点可实现94% - 占其完全监督的性能的98%,为弱化的实例细分定下了强大的基线。新点注释方案的速度比注释完整的对象掩码快5倍,使高质量实例分割在实践中更容易访问。受基于点的注释形式的启发,我们提出了对Pointrend实例分割模块的修改。对于每个对象,称为隐式pointrend的新体系结构生成一个函数的参数,该函数可以使最终的点级掩码预测。隐式Pointrend更加简单,并使用单点级掩蔽丢失。我们的实验表明,新模块更适合基于点的监督。
translated by 谷歌翻译
In this work, we introduce Panoptic-DeepLab, a simple, strong, and fast system for panoptic segmentation, aiming to establish a solid baseline for bottom-up methods that can achieve comparable performance of two-stage methods while yielding fast inference speed. In particular, Panoptic-DeepLab adopts the dual-ASPP and dual-decoder structures specific to semantic, and instance segmentation, respectively. The semantic segmentation branch is the same as the typical design of any semantic segmentation model (e.g., DeepLab), while the instance segmentation branch is class-agnostic, involving a simple instance center regression. As a result, our single Panoptic-DeepLab simultaneously ranks first at all three Cityscapes benchmarks, setting the new state-of-art of 84.2% mIoU, 39.0% AP, and 65.5% PQ on test set. Additionally, equipped with MobileNetV3, Panoptic-DeepLab runs nearly in real-time with a single 1025 × 2049 image (15.8 frames per second), while achieving a competitive performance on Cityscapes (54.1 PQ% on test set). On Mapillary Vistas test set, our ensemble of six models attains 42.7% PQ, outperforming the challenge winner in 2018 by a healthy margin of 1.5%. Finally, our Panoptic-DeepLab also performs on par with several topdown approaches on the challenging COCO dataset. For the first time, we demonstrate a bottom-up approach could deliver state-of-the-art results on panoptic segmentation.
translated by 谷歌翻译
Bottom-up human pose estimation methods have difficulties in predicting the correct pose for small persons due to challenges in scale variation. In this paper, we present HigherHRNet: a novel bottom-up human pose estimation method for learning scale-aware representations using high-resolution feature pyramids. Equipped with multi-resolution supervision for training and multiresolution aggregation for inference, the proposed approach is able to solve the scale variation challenge in bottom-up multi-person pose estimation and localize keypoints more precisely, especially for small person. The feature pyramid in HigherHRNet consists of feature map outputs from HRNet and upsampled higher-resolution outputs through a transposed convolution. HigherHR-Net outperforms the previous best bottom-up method by 2.5% AP for medium person on COCO test-dev, showing its effectiveness in handling scale variation. Furthermore, HigherHRNet achieves new state-of-the-art result on COCO test-dev (70.5% AP) without using refinement or other post-processing techniques, surpassing all existing bottom-up methods. HigherHRNet even surpasses all topdown methods on CrowdPose test (67.6% AP), suggesting its robustness in crowded scene. The code and models are available at https://github.com/HRNet/ Higher-HRNet-Human-Pose-Estimation.
translated by 谷歌翻译
Panoptic Part Segmentation (PPS) unifies panoptic segmentation and part segmentation into one task. Previous works utilize separated approaches to handle thing, stuff, and part predictions without shared computation and task association. We aim to unify these tasks at the architectural level, designing the first end-to-end unified framework named Panoptic-PartFormer. Moreover, we find the previous metric PartPQ biases to PQ. To handle both issues, we make the following contributions: Firstly, we design a meta-architecture that decouples part feature and things/stuff feature, respectively. We model things, stuff, and parts as object queries and directly learn to optimize all three forms of prediction as a unified mask prediction and classification problem. We term our model as Panoptic-PartFormer. Secondly, we propose a new metric Part-Whole Quality (PWQ) to better measure such task from both pixel-region and part-whole perspectives. It can also decouple the error for part segmentation and panoptic segmentation. Thirdly, inspired by Mask2Former, based on our meta-architecture, we propose Panoptic-PartFormer++ and design a new part-whole cross attention scheme to further boost part segmentation qualities. We design a new part-whole interaction method using masked cross attention. Finally, the extensive ablation studies and analysis demonstrate the effectiveness of both Panoptic-PartFormer and Panoptic-PartFormer++. Compared with previous Panoptic-PartFormer, our Panoptic-PartFormer++ achieves 2% PartPQ and 3% PWQ improvements on the Cityscapes PPS dataset and 5% PartPQ on the Pascal Context PPS dataset. On both datasets, Panoptic-PartFormer++ achieves new state-of-the-art results with a significant cost drop of 70% on GFlops and 50% on parameters. Our models can serve as a strong baseline and aid future research in PPS. Code will be available.
translated by 谷歌翻译