多变量时间序列(MTS)预测在智能应用的自动化和优化中起着重要作用。这是一个具有挑战性的任务,因为我们需要考虑复杂的变量依赖关系和可变间依赖关系。现有的作品仅在单个可变依赖项的帮助下学习时间模式。然而,许多真实世界MTS中有多种时间模式。单个可变间依赖项使模型更倾向于学习一种类型的突出和共享的时间模式。在本文中,我们提出了一个多尺度自适应图形神经网络(MOLDN)来解决上述问题。 MOLDN利用多尺度金字塔网络,以在不同的时间尺度上保留潜在的时间依赖关系。由于可变间依赖关系可以在不同的时间尺度下不同,所以自适应图学习模块被设计为在没有预先定义的前沿的情况下推断规模特定的可变依赖关系。鉴于多尺度特征表示和规模特定的可变间依赖关系,引入了一个多尺度的时间图神经网络,以共同模拟帧内依赖性和可变间依赖性。之后,我们开发一个尺度明智的融合模块,以在不同时间尺度上有效地促进协作,并自动捕获贡献的时间模式的重要性。四个真实数据集的实验表明,Magnn在各种设置上表明了最先进的方法。
translated by 谷歌翻译
随着商业深度传感器和3D扫描仪的最近可用性和可承受能力,越来越多的3D(即RGBD,点云)数据集已被宣传以促进3D计算机视觉的研究。但是,现有的数据集覆盖相对较小的区域或具有有限的语义注释。对城市规模3D场景的细粒度理解仍处于起步阶段。在本文中,我们介绍了Sensaturban,一个城市规模的UAV摄影测量点云数据集,包括从三个英国城市收集的近30亿积分,占地7.6公里^ 2。 DataSet中的每个点已标记为具有细粒度的语义注释,导致数据集是上一个现有最大摄影测量点云数据集的三倍的三倍。除了诸如道路和植被等诸如道路和植被的常见类别之外,我们的数据集还包含包括轨道,桥梁和河流的城市水平类别。基于此数据集,我们进一步构建了基准,以评估最先进的分段算法的性能。特别是,我们提供了全面的分析,确定了限制城市规模点云理解的几个关键挑战。数据集可在http://point-cloud-analysis.cs.ox.ac.uk中获取。
translated by 谷歌翻译
与淘宝和亚马逊等大型平台不同,由于严重的数据分配波动(DDF)问题,在小规模推荐方案中开发CVR模型是更具挑战性的。 DDF防止现有的CVR模型自生效以来,因为1)需要几个月的数据需要足够小的场景训练CVR模型,导致培训和在线服务之间的相当大的分布差异; 2)电子商务促销对小型情景产生了更大的影响,导致即将到期的时间段的不确定性。在这项工作中,我们提出了一种名为MetacVR的新型CVR方法,从Meta学习的角度解决了DDF问题。首先,由特征表示网络(FRN)和输出层组成的基础CVR模型是精心设计和培训的,在几个月内与样品充分设计和培训。然后,我们将不同数据分布的时间段视为不同的场合,并使用相应的样本和预先训练的FRN获得每个场合的正面和负原型。随后,设计了距离度量网络(DMN)以计算每个样本和所有原型之间的距离度量,以便于减轻分布不确定性。最后,我们开发了一个集合预测网络(EPN),该网络(EPN)包含FRN和DMN的输出以进行最终的CVR预测。在这个阶段,我们冻结了FRN并用最近一段时间的样品训练DMN和EPN,因此有效地缓解了分布差异。据我们所知,这是在小规模推荐方案中针对DDF问题的CVR预测第一次研究。实验结果对现实世界数据集验证了我们的MetacVR和Online A / B测试的优越性也表明我们的模型在PCVR上实现了11.92%的令人印象深刻的收益和GMV的8.64%。
translated by 谷歌翻译
促销活动在电子商务平台上变得更加重要和普遍,以吸引客户和提升销售。但是,推荐系统中的点击率(CTR)预测方法无法处理此类情况,因为:1)他们无法概括为服务,因为在线数据分布是不确定的,因为可能正在推出的促销潜在的促销; 2)在不够重视方案信号的情况下,它们无法学习在每个场景中共存的不同特征表示模式。在这项工作中,我们提出了方案自适应混合的专家(相同),这是一个简单而有效的模型,用于促销和正常情况。从技术上讲,它通过采用多个专家来学习专家来遵循专家混合的想法,这些特征表示通过注意机制通过特征门控网络(FGN)进行调制。为了获得高质量的表示,我们设计了一个堆叠的并行关注单元(SPAU),以帮助每个专家更好地处理用户行为序列。为了解决分布不确定性,从时间序列预测的角度精确地设计了一组场景信号,并馈入FGN,其输出与来自每个专家的特征表示连接,以学会注意。因此,特征表示的混合是自适应的场景和用于最终的CTR预测。通过这种方式,每个专家都可以学习鉴别的表示模式。据我们所知,这是第一次推广感知CTR预测的研究。实验结果对现实世界数据集验证了同一的优势。在线A / B测试也表现出同样的促销期间在CTR上的显着增益和5.94%的IPV,分别在正常日内为3.93%和6.57%。
translated by 谷歌翻译
尽管在广泛的愿景任务中取得了诱人的成功,但变形金刚尚未在高分辨率图像生成建模中作为Convnets的讨论能力。在本文中,我们寻求探索使用纯变压器来构建用于高分辨率图像合成的生成对抗网络。为此,我们认为,当地的关注是在计算效率和建模能力之间取得平衡至关重要。因此,所提出的发电机采用基于风格的架构中的Swin变压器。为了实现更大的接收领域,我们提出了双重关注,同时利用本地和移位窗的上下文,从而提高了发电质量。此外,我们表明提供了在基于窗口的变压器中丢失的绝对位置的知识极大地利益了代理。所提出的STYLESWIN可扩展到高分辨率,粗糙几何和细结构都受益于变压器的强效力。然而,在高分辨率合成期间发生阻塞伪像,因为以块明智的方式执行局部注意力可能会破坏空间一致性。为了解决这一点,我们经验研究了各种解决方案,其中我们发现采用小波鉴别器来检查光谱差异的措施有效地抑制伪影。广泛的实验表明了对现有的基于变压器的GAN的优越性,特别是在高分辨率上,例如高分辨率,例如1024x1024。如果没有复杂的培训策略,则在Celeba-HQ 1024上赢得了STYLEGAN,并且在FFHQ-1024上实现了对PAR的表现,证明了使用变压器进行高分辨率图像生成的承诺。代码和模型将在https://github.com/microsoft/styleswin上使用。
translated by 谷歌翻译
多变量时间序列(MTS)预测在许多智能应用中引起了很多关注。它不是一个琐碎的任务,因为我们需要考虑一个可变的依赖关系和可变间依赖关系。但是,现有的作品是针对特定场景设计的,需要很多域知识和专家努力,这难以在不同的场景之间传输。在本文中,我们提出了一种尺度意识的神经结构,用于MTS预测(SNAS4MTF)的搜索框架。多尺度分解模块将原始时间序列转换为多尺度子系列,可以保留多尺度的时间模式。自适应图形学习模块在没有任何先前知识的情况下,在不同的时间尺度下递送不同的变量间依赖关系。对于MTS预测,搜索空间旨在在每次尺度上捕获可变的可变依赖性和可变间依赖关系。在端到端框架中共同学习多尺度分解,自适应图学习和神经架构搜索模块。两个现实世界数据集的大量实验表明,与最先进的方法相比,SNAS4MTF实现了有希望的性能。
translated by 谷歌翻译
离线强化学习利用静态数据集来学习最佳策略,无需访问环境。由于代理商在线交互的展示和培训期间的样本数量,这种技术对于多代理学习任务是可取的。然而,在多代理强化学习(Marl)中,从未研究过在线微调的离线预训练的范式从未研究过,可以使用离线MARL研究的数据集或基准。在本文中,我们试图回答违规在Marl中的离线培训是否能够学习一般的政策表现,这些问题可以帮助提高多个下游任务的性能。我们首先引入基于Starcraftia环境的不同质量水平的第一个离线Marl数据集,然后提出了用于有效的离线学习的多代理决策变压器(MADT)的新颖体系结构。 MADT利用变换器的时间表示的建模能力,并将其与离线和在线MARL任务集成。 Madt的一个至关重要的好处是,它学会了可以在不同任务场景下不同类型的代理之间转移的可稳定性政策。当在脱机目的Datline数据上进行评估时,Madt展示了比最先进的离线RL基线的性能卓越。当应用于在线任务时,预先训练的MADT显着提高了样品效率,即使在零射击案件中也享有强大的性能。为了我们的最佳知识,这是第一个研究并展示了在Marl中的样本效率和最常性增强方面的离线预训练模型的有效性。
translated by 谷歌翻译
我们介绍了文本到图像生成的矢量量化扩散(VQ-扩散)模型。该方法基于矢量量化变分性AutoEncoder(VQ-VAE),其潜像通过最近开发的去噪扩散概率(DDPM)的条件变体为基础。我们发现这种潜在空间方法非常适合于图像到图像生成任务,因为它不仅消除了具有现有方法的单向偏差,还允许我们结合掩模和更换的扩散策略,以避免积累错误,这是现有方法的严重问题。我们的实验表明,与具有类似数量的参数数量的传统自回归(AR)模型相比,VQ扩散产生明显更好的文本到图像生成结果。与以前的基于GAN的文本到图像方法相比,我们的VQ扩散可以通过大边缘处理更复杂的场景并提高合成的图像质量。最后,我们表明我们的方法中的图像生成计算可以通过Reparameter化进行高效。利用传统的AR方法,文本到图像生成时间随输出图像分辨率线性增加,因此即使对于正常尺寸图像也是相当耗时的。 VQ-扩散使我们能够在质量和速度之间实现更好的权衡。我们的实验表明,具有Reparameterization的VQ扩散模型比传统的AR方法快15倍,同时实现更好的图像质量。
translated by 谷歌翻译
媒体中的人员搜索已经看到互联网应用程序的潜力,例如视频剪辑和字符集。这项任务很常见,但忽略了以前的人员搜索工作,专注于监视场景。媒体情景从监视场景中有一些不同的挑战。例如,一个人可能经常改变衣服。为了减轻这个问题,本文提出了一个统一的探测器和图形网络(UDGNET),用于媒体中的人员搜索。 UDGNET是第一个检测和重新识别人体和头部的第一个人搜索框架。具体地,它首先基于统一网络构建两个分支以检测人体和头部,然后检测到的主体和头部用于重新识别。这种双重任务方法可以显着增强歧视性学习。为了解决布料不断变化的问题,UDGNET构建了两个图形,以探索布换器样本中的可靠链接,并利用图形网络来学习更好的嵌入。这种设计有效地增强了人们搜索的鲁棒性,以改变布什挑战。此外,我们证明了UDGNET可以通过基于锚和无锚的人搜索框架来实现,并进一步实现性能改进。本文还为媒体(PSM)中的人员搜索提供了大规模数据集,其提供身体和头部注释。它是迄今为止媒体搜索的最大数据集。实验表明,UDGNET在MAP中通过12.1%提高了Anipor的模型。同时,它在监控和长期情景中显示出良好的概括。数据集和代码将可用:https://github.com/shuxjweb/psm.git。
translated by 谷歌翻译
图表的稀疏表示已经提出了加速传统计算架构(CPU,GPU或TPU)上的图形应用程序(例如社交网络,知识图表)计算的巨大潜力。但是探索计算内存(PIM)平台上的大规模稀疏图计算(通常具有忆内横梁)仍处于起步阶段。当我们期望在Memristive Crossbars上实现大规模或批量图的计算或存储时,自然假设是我们需要大规模的横梁,但利用率低。一些最近的作品已经质疑这种假设,以避免通过“块分区”浪费存储和计算资源,这是固定尺寸的,逐渐预定的或粗粒,因此在我们的观点中没有有效地稀疏。该工作提出了动态稀疏感知映射方案,其将问题模拟作为通过加强学习(RL)算法(R1)算法解决的顺序决策问题。我们的生成模型(LSTM,与我们的动态填充机制相结合)在小规模的典型图形/矩阵数据(具有完全映射的原始矩阵的43%面积)上产生显着的映射性能,以及两个大规模矩阵数据(22.5 QH882的%面积,QH1484上的17.1%面积)。此外,我们该方案的编码框架是直观的,并且对部署或编译系统具有有希望的适应性。
translated by 谷歌翻译