标识识别的挑战之一在于形式的多样性,例如符号,文本或两者的组合;此外,徽标在设计中往往非常简洁,而外观类似,表明学习歧视性表示的难度。为了调查徽标的品种和表示,我们介绍了Makeup216,这是来自现实世界的化妆领域的最大和最复杂的Logo数据集。它包括216个标志和157个品牌,包括10,019个图像和37,018个注释的徽标对象。此外,我们发现纯粹徽标周围的边缘背景可以提供重要的上下文信息,并提出了对抗主题的普发提徒注意力表示框架(AAR),分别参加徽标主体和辅助边缘背景,这可以组合以获得更好的表示。我们所提出的框架在Makeup216和另一个大型开放标识数据集中实现了竞争结果,可以为徽标识别提供新的思考。 MakeUp216的数据集及建议框架的代码即将发布。
translated by 谷歌翻译