睡眠是一种基本的生理过程,对于维持健康的身心至关重要。临床睡眠监测的黄金标准是多核桃摄影(PSG),基于哪个睡眠可以分为五个阶段,包括尾脉冲睡眠(REM睡眠)/非REM睡眠1(N1)/非REM睡眠2 (n2)/非REM睡眠3(n3)。然而,PSG昂贵,繁重,不适合日常使用。对于长期睡眠监测,无处不在的感测可以是解决方案。最近,心脏和运动感测在分类三阶段睡眠方面变得流行,因为两种方式都可以从研究级或消费者级设备中获得(例如,Apple Watch)。但是,为最大准确性融合数据的最佳仍然是一个打开的问题。在这项工作中,我们综合地研究了深度学习(DL)的高级融合技术,包括三种融合策略,三个融合方法以及三级睡眠分类,基于两个公共数据集。实验结果表明,通过融合心脏/运动传感方式可以可靠地分类三阶段睡眠,这可能成为在睡眠中进行大规模睡眠阶段评估研究或长期自动跟踪的实用工具。为了加快普遍存在/可穿戴计算社区的睡眠研究的进展,我们制作了该项目开源,可以在:https://github.com/bzhai/ubi-sleepnet找到代码。
translated by 谷歌翻译
在Crypto 2019中,Gohr进行了开创性的尝试,并成功地向NSA块密码SPECK32 / 64进行了深度学习,实现了比纯差分区分的更高的精度。通过其本质,数据中的挖掘有效特征在数据驱动的深度学习中起着至关重要的作用。在本文中,除了从密文对的训练数据中考虑信息的完整性,还考虑了关于差分密码分析结构的域知识也被认为是深度学习的培训过程,提高性能。此外,基于SAT / SMT求解器,我们发现其他高概率兼容差分特性,与以前的工作相比有效地提高了性能。我们建立针对西蒙和Simeck的神经区别师(NDS)和相关关键的神经区别SIMON32 / 64的ND和RKND分别达到11-,11轮,精度分别为59.55%和97.90%。对于Simon64 / 128,ND在13轮达到60.32%的准确性,而RKND为95.49%。对于SIMECK32 / 64,获得11-,14轮的ND和RKND,分别达到63.32%和87.06%的准确度。我们为SIMECK64 / 128建立了17轮ND和21轮RKND,精度分别为64.24%和62.96%。目前,这些是Simon32 / 64,Simon64 / 128,Simeck32 / 64和Simeck64 / 128的更高精度的最长(相关关键)的神经区别。
translated by 谷歌翻译
近年来,评估视频的行动质量引起了计算机视觉群落和人机互动中的不断关注。大多数现有方法通常通过直接从动作识别任务迁移模型来解决这个问题,这忽略了特征映射内的内在差异,例如前景和背景信息。为了解决这个问题,我们提出了一种用于行动质量评估(AQA)的管自我关注网络(TSA网)。具体地,我们将单个对象跟踪器引入AQA并提出了管自我关注模块(TSA),可以通过采用稀疏特征交互有效地产生丰富的时空上下文信息。 TSA模块嵌入在现有的视频网络中以形成TSA-Net。总体而言,我们的TSA-网具有以下优点:1)高计算效率,2)灵活性高,3)最先进的性能。在包括AQA-7和MTL-AQA的流行动作质量评估数据集上进行了广泛的实验。此外,提出了一个名为Fint识别的数据集(FR-FS),以探索花样滑冰场景中的基本动作评估。
translated by 谷歌翻译
心肌活力的评估对于患有心肌梗塞的患者的诊断和治疗管理是必不可少的,并且心肌病理学的分类是本评估的关键。这项工作定义了医学图像分析的新任务,即进行心肌病理分割(MYOPS)结合三个序列的心脏磁共振(CMR)图像,该图像首次与Mycai 2020一起在Myops挑战中提出的。挑战提供了45个配对和预对准的CMR图像,允许算法将互补信息与三个CMR序列组合到病理分割。在本文中,我们提供了挑战的详细信息,从十五个参与者的作品调查,并根据五个方面解释他们的方法,即预处理,数据增强,学习策略,模型架构和后处理。此外,我们对不同因素的结果分析了结果,以检查关键障碍和探索解决方案的潜力,以及为未来的研究提供基准。我们得出结论,虽然报告了有前途的结果,但研究仍处于早期阶段,在成功应用于诊所之前需要更深入的探索。请注意,MyOPS数据和评估工具继续通过其主页(www.sdspeople.fudan.edu.cn/zhuangxiahai/0/myops20 /)注册注册。
translated by 谷歌翻译
我们介绍了一种新颖的骨干架构,提高特征表示的目标感知能力。具体地,已经观察到事实上框架简单地使用来自骨干网的输出来执行特征匹配,从备份目标本地化,没有从匹配模块到骨干网的直接反馈,尤其是浅层。更具体地,只有匹配模块可以直接访问目标信息(在参考帧中),而候选帧的表示学习对参考目标是盲目的。结果,浅级中的目标 - 无关干扰的累积效果可能降低更深层的特征质量。在本文中,我们通过在暹罗类似的骨干网(inbn)内进行多个分支 - 方面交互来从不同角度接近问题。在INBN的核心是一个通用交互建模器(GIM),其将参考图像的先前知识注入骨干网络的不同阶段,导致候选特征表示的更好的目标感知和鲁棒的牵引力,其计算成本具有可忽略的计算成本。所提出的GIM模块和INBN机制是一般的,适用于不同的骨干类型,包括CNN和变压器,以改进,如我们在多个基准上的广泛实验所证明的那样。特别是,CNN版本(基于Siamcar),分别在Lasot / TNL2K上改善了3.2 / 6.9的Suc绝对收益。变压器版本获取Lasot / TNL2K的SUC 25.7 / 52.0,与最近的艺术态度相提并论。代码和模型将被释放。
translated by 谷歌翻译
新的纳米级技术的出现对辐射环境中的可靠电子系统造成了重大挑战。少数种类的辐射等全电离剂量(TID)效应通常导致在这种纳米级电子设备上的永久性损坏,以及当前最先进的技术,以使用昂贵的辐射硬化装置。本文重点介绍了一种新颖且不同的方法:在消费者电子级现场可编程门阵列(FPGA)上使用机器学习算法来解决TID效果并在停止工作之前监控它们替换。这种情况有一个研究挑战,以期待电路板因TID效应而导致总失效。我们观察到γ辐射下FPGA板的内部测量,并使用了三种不同的异常检测机学习(ML)算法来检测伽马辐射环境中的传感器测量中的异常。统计结果表明伽马辐射曝光水平与板测量之间的高度显着关系。此外,我们的异常检测结果表明,具有径向基函数内核的单级支持向量机的平均召回得分为0.95。此外,在电路板停止工作之前,可以检测到所有异常。
translated by 谷歌翻译
通过实现复杂场景实现长期漂移相机姿势估计的目标,我们提出了一种全球定位框架,融合了多层的视觉,惯性和全球导航卫星系统(GNSS)测量。不同于以前的松散和紧密耦合的方法,所提出的多层融合允许我们彻底校正视觉测量仪的漂移,并在GNSS降解时保持可靠的定位。特别地,通过融合GNSS的速度,在紧紧地集成的情况下,解决视觉测量测量测量测量率和偏差估计中的尺度漂移和偏差估计的问题的问题,惯性测量单元(IMU)的预集成以及紧密相机测量的情况下 - 耦合的方式。在外层中实现全局定位,其中局部运动进一步与GNSS位置和基于长期时期的过程以松散耦合的方式融合。此外,提出了一种专用的初始化方法,以保证所有状态变量和参数的快速准确估计。我们为室内和室外公共数据集提供了拟议框架的详尽测试。平均本地化误差减少了63%,而初始化精度与最先进的工程相比,促销率为69%。我们已将算法应用于增强现实(AR)导航,人群采购高精度地图更新等大型应用。
translated by 谷歌翻译
可扩展的编码,可以适应通道带宽变化,在当今复杂的网络环境中表现良好。然而,现有的可扩展压缩方法面临两个挑战:降低压缩性能和可扩展性不足。在本文中,我们提出了第一所学习的细粒度可扩展图像压缩模型(DeepFGS)来克服上述两个缺点。具体地,我们介绍一个特征分离骨干,将图像信息划分为基本和可伸缩的功能,然后通过信息重新排列策略通过通道重新分配特征通道。以这种方式,我们可以通过一次通过编码来生成连续可扩展的比特流。此外,我们重复使用解码器以降低DeepFGS的参数和计算复杂性。实验表明,我们的DeePFGS优于PSNR和MS-SSIM度量中的所有基于学习的可伸缩图像压缩模型和传统可伸缩图像编解码器。据我们所知,我们的DeePFGS是对学习的细粒度可扩展编码的首次探索,与基于学习的方法相比,实现了最优质的可扩展性。
translated by 谷歌翻译
虽然深度神经网络的最近进步使得可以呈现高质量的图像,产生照片 - 现实和个性化的谈话头部仍然具有挑战性。通过给定音频,解决此任务的关键是同步唇部运动,同时生成头部移动和眼睛闪烁等个性化属性。在这项工作中,我们观察到输入音频与唇部运动高度相关,而与其他个性化属性的较少相关(例如,头部运动)。受此启发,我们提出了一种基于神经辐射场的新颖框架,以追求高保真和个性化的谈话。具体地,神经辐射场将唇部运动特征和个性化属性作为两个解除态条件采用,其中从音频输入直接预测唇部移动以实现唇部同步的生成。同时,从概率模型采样个性化属性,我们设计了从高斯过程中采样的基于变压器的变差自动码器,以学习合理的和自然的头部姿势和眼睛闪烁。在几个基准上的实验表明,我们的方法比最先进的方法达到了更好的结果。
translated by 谷歌翻译
基于添加条件独立性,我们为离散节点变量引入非参数图形模型。添加剂条件独立性是一种三种方式统计关系,其通过满足半石灰阳极公理来利用有条件独立性与有条件的独立性共享类似的性质。基于该关系,我们构建了一种用于离散变量的加性图形模型,其不受诸如诸如Ising模型的参数模型的限制。我们通过惩罚添加精度运算符的离散版本的惩罚估算来开发新的图形模型的估计,并在超高维设置下建立估计器的一致性。随着这些方法的发展,我们还利用离散随机变量的性质来揭示添加剂条件独立性与条件独立性之间的更深层次关系。新的图形模型在某些稀疏条件下减少了条件独立性图形模型。我们进行仿真实验和对HIV抗逆转录病毒治疗数据集的分析,以比较现有的新方法。
translated by 谷歌翻译