在Crypto 2019中,Gohr进行了开创性的尝试,并成功地向NSA块密码SPECK32 / 64进行了深度学习,实现了比纯差分区分的更高的精度。通过其本质,数据中的挖掘有效特征在数据驱动的深度学习中起着至关重要的作用。在本文中,除了从密文对的训练数据中考虑信息的完整性,还考虑了关于差分密码分析结构的域知识也被认为是深度学习的培训过程,提高性能。此外,基于SAT / SMT求解器,我们发现其他高概率兼容差分特性,与以前的工作相比有效地提高了性能。我们建立针对西蒙和Simeck的神经区别师(NDS)和相关关键的神经区别SIMON32 / 64的ND和RKND分别达到11-,11轮,精度分别为59.55%和97.90%。对于Simon64 / 128,ND在13轮达到60.32%的准确性,而RKND为95.49%。对于SIMECK32 / 64,获得11-,14轮的ND和RKND,分别达到63.32%和87.06%的准确度。我们为SIMECK64 / 128建立了17轮ND和21轮RKND,精度分别为64.24%和62.96%。目前,这些是Simon32 / 64,Simon64 / 128,Simeck32 / 64和Simeck64 / 128的更高精度的最长(相关关键)的神经区别。
translated by 谷歌翻译
细粒度命名实体键入(FG-NET)旨在根据上下文将实体提及的实体提及到广泛的实体类型(通常数百个)。虽然遥远的监督是获取监督培训数据的最常见方法,但它带来了标签噪声,因为它将类型标签分配给实体提及,而不论提及背景如何。为了处理标签噪声,对FG-NET的领先研究假设,细颗粒的实体键入数据具有欧几里得性质,这限制了现有模型在打击标签噪声方面的能力。鉴于细粒型层次结构表现出层次结构的事实,它使双曲线空间成为对FG-NET数据进行建模的自然选择。在这项研究中,我们提出了FGNET-RH,这是一个新颖的框架,该框架从双曲线几何形状与图形结构结合使用,以表现性能增强的方式执行实体打字。 FGNET-RH最初使用LSTM网络与其上下文相关的提及,后来形成了一个图形来提炼/完善双曲线空间中的提及编码。最后,精制的提及编码用于实体键入。使用不同基准数据集的实验表明,就严格的准确性而言,FGNET-RH将FGNET-RH提高了FG-NET的性能高达3.5%。
translated by 谷歌翻译
广义零射门学习(GZSL)是有希望在许多实际场景前景具有挑战性的课题。使用门控机构,其判别从看出样品看不见的样品可以分解GZSL问题常规的零铅球学习(ZSL)问题和监督分类问题。然而,培养的栅极通常是由于具有挑战性在看不见的域中的数据缺乏。要解决这个问题,在本文中,我们提出了一种基于外的分布(OOD)分类器只使用看过样本训练分类看不见,看到域的边界。首先,我们学上的单位超球,其中的视觉特征和语义属性潜分布对准类明智地共享潜在空间。随后,我们发现边界和歧管每个类的中心。通过利用类中心和边界,看不见的样品可以从样品可见分开。在那之后,我们使用了两个专家来看到和看不见的样本分别进行分类。我们广泛验证我们的五个流行的基准数据集,包括AWA1,AWA2,CUB,FLO和SUN的做法。实验结果表明,我们对国家的最先进的方法,方法的优点。
translated by 谷歌翻译
临床试验对于药物开发至关重要,但非常昂贵且耗时。在设计临床试验时,研究类似的历史试验是有益的。但是,冗长的试用文件和缺乏标记的数据使试验相似性搜索变得困难。我们提出了一种零拍的临床试验检索方法试验2VEC,该方法通过自学知识学习而无需注释类似的临床试验。具体而言,试验文件的元结构(例如,标题,资格标准,目标疾病)以及临床知识(例如,UMLS知识库https://www.nlm.nih.gov/research/umls/inmls/index.html)被杠杆化以自动生成对比样品。此外,Trial2VEC编码考虑元结构的试验文件,从而产生紧凑的嵌入,从而从整个文档中汇总了多相关信息。我们表明,我们的方法通过可视化产生了可解释的医学解释的嵌入,并且在试验检索的精确/召回率上的最佳基线比最佳基线得到15%的改善,这是在我们标记的1600个试验对中评估的。此外,我们证明预先训练的嵌入在240K试验中受益于下游试验结果预测任务。
translated by 谷歌翻译
基于对比度学习(CL)以成对的方式学习视觉表示。尽管流行的CL模型取得了长足的进步,但在本文中,我们发现了一种不断被忽视的现象:当CL模型接受完整图像训练时,以完整图像测试的性能要比前景区域的表现更好。当CL模型接受前景区域训练时,以完整图像测试的性能要比前景区域差。该观察结果表明,图像中的背景可能会干扰模型学习语义信息及其影响尚未完全消除。为了解决这个问题,我们建立了一个结构性因果模型(SCM),以建模背景作为混杂因素。我们提出了一种基于后门调整的正则化方法,即用元语义正常器(ICL-MSR)进行介入的对比度学习,以对所提出的SCM进行因果干预。可以将ICL-MSR纳入任何现有的CL方法中,以减轻代表学习的背景干扰。从理论上讲,我们证明ICL-MSR达到了更严格的误差。从经验上讲,我们在多个基准数据集上的实验表明,ICL-MSR能够改善不同最先进的CL方法的性能。
translated by 谷歌翻译
移动对象(DATMO)的检测和跟踪是自动驾驶环境感知的重要组成部分。虽然使用环绕视图摄像机的3D检测器只是蓬勃发展,但越来越多的趋势是使用不同的基于变压器的方法从透视图的2D特征图中学习3D空间中的查询。本文提出了稀疏的R-CNN 3D(SRCN3D),这是一种新颖的两阶段全横向卷积映射管道,用于环绕视图摄像机检测和跟踪。 SRCN3D采用了级联结构,具有固定数量的提案盒和提案潜在功能的双轨更新。预计提案框可以透视视图,以汇总感兴趣的区域(ROI)本地特征。基于此,提案功能通过动态实例交互式头部进行完善,然后生成分类,并应用于原始边界框。与先前的艺术相比,我们的稀疏功能采样模块仅利用本地2D功能来调整每个相应的3D提案盒,从而导致完整的稀疏范式。提案功能和外观特征均在数据关联过程中采用多刺激性3D多对象跟踪方法。 Nuscenes数据集的广泛实验证明了我们提出的SRCN3D检测器和跟踪器的有效性。代码可在https://github.com/synsin0/srcn3d上找到。
translated by 谷歌翻译
人类骨骼数据由于其背景鲁棒性和高效率而受到行动识别的越来越多。在基于骨架的动作识别中,图形卷积网络(GCN)已成为主流方法。本文分析了基于GCN的模型的基本因素 - 邻接矩阵。我们注意到,大多数基于GCN的方法基于人类天然骨架结构进行其邻接矩阵。根据我们以前的工作和分析,我们建议人类的自然骨骼结构邻接矩阵不适合基于骨架的动作识别。我们提出了一个新的邻接矩阵,该矩阵放弃了所有刚性邻居的连接,但使该模型可以适应地学习关节的关系。我们对两个基于骨架的动作识别数据集(NTURGBD60和FINEGYM)进行了验证模型进行广泛的实验和分析。全面的实验结果和分析表明,1)最广泛使用的人类天然骨骼结构邻接矩阵在基于骨架的动作识别中不适合; 2)所提出的邻接矩阵在模型性能,噪声稳健性和可传递性方面表现出色。
translated by 谷歌翻译
多模式的细粒情感分析最近由于其广泛的应用而引起了人们的关注。但是,现有的多模式细颗粒情感数据集最关注注释文本中的细粒元素,但忽略图像中的元素,这导致视觉内容中的细粒度元素没有得到应有的全部关注。在本文中,我们提出了一个新的数据集,即多模式方面类别情感分析(MACSA)数据集,其中包含超过21k的文本图像对。该数据集为文本和视觉内容提供细粒度的注释,并首先将方面类别用作枢轴,以对齐两种模态之间的细粒元素。基于我们的数据集,我们提出了多模式ACSA任务和基于多模式的对齐模型(MGAM),该模型(MGAM)采用了细粒度的跨模式融合方法。实验结果表明,我们的方法可以促进基线比较,以实现该语料库的未来研究。我们将使数据集和代码公开可用。
translated by 谷歌翻译
大规模矢量映射对于运输,城市规划,调查和人口普查很重要。我们提出了GraphMapper,这是从卫星图像中提取端到端向量图的统一框架。我们的关键思想是一种新颖的统一表示,称为“原始图”的不同拓扑的形状,这是一组形状原语及其成对关系矩阵。然后,我们将向量形状的预测,正则化和拓扑重构转换为独特的原始图学习问题。具体而言,GraphMapper是一个基于多头注意的全局形状上下文建模的通用原始图形学习网络。开发了一种嵌入式空间排序方法,用于准确的原始关系建模。我们从经验上证明了GraphMapper对两个具有挑战性的映射任务的有效性,即建立足迹正则化和道路网络拓扑重建。我们的模型在公共基准上的两项任务中都优于最先进的方法。所有代码将公开可用。
translated by 谷歌翻译
共同监督的深度学习方法的关节深度和自我运动估计可以产生准确的轨迹,而无需地面真相训练数据。但是,由于通常会使用光度损失,因此当这些损失所产生的假设(例如时间照明一致性,静态场景以及缺少噪声和遮挡)时,它们的性能会显着降解。这限制了它们用于例如夜间序列倾向于包含许多点光源(包括在动态对象上)和较暗图像区域中的低信噪比(SNR)。在本文中,我们展示了如何使用三种技术的组合来允许现有的光度损失在白天和夜间图像中起作用。首先,我们引入了每个像素神经强度转化,以补偿连续帧之间发生的光变化。其次,我们预测了每个像素的残差流图,我们用来纠正由网络估计的自我运动和深度引起的重新注入对应关系。第三,我们将训练图像降低,以提高方法的鲁棒性和准确性。这些更改使我们可以在白天和夜间图像中训练单个模型,而无需单独的编码器或诸如现有方法(例如现有方法)的额外功能网络。我们对具有挑战性的牛津机器人数据集进行了广泛的实验和消融研究,以证明我们方法对白天和夜间序列的疗效。
translated by 谷歌翻译