Recently, density map regression-based methods have dominated in crowd counting owing to their excellent fitting ability on density distribution. However, further improvement tends to saturate mainly because of the confusing background noise and the large density variation. In this paper, we propose a Hierarchically Decoupled Network (HDNet) to solve the above two problems within a unified framework. Specifically, a background classification sub-task is decomposed from the density map prediction task, which is then assigned to a Density Decoupling Module (DDM) to exploit its highly discriminative ability. For the remaining foreground prediction sub-task, it is further hierarchically decomposed to several density-specific sub-tasks by the DDM, which are then solved by the regression-based experts in a Foreground Density Estimation Module (FDEM). Although the proposed strategy effectively reduces the hypothesis space so as to relieve the optimization for those task-specific experts, the high correlation of these sub-tasks are ignored. Therefore, we introduce three types of interaction strategies to unify the whole framework, which are Feature Interaction, Gradient Interaction, and Scale Interaction. Integrated with the above spirits, HDNet achieves state-of-the-art performance on several popular counting benchmarks.
translated by 谷歌翻译
变更检测(CD)旨在识别在不同时间拍摄的图像对中发生的变化。先前的方法从头开始设计特定的网络,以预测像素级别中的更改口罩,并与一般分割问题斗争。在本文中,我们提出了一种新的范式,该范式将CD降低到语义分割,这意味着调整现有且强大的语义分割网络以求解CD。这种新的范式方便地享受主流语义分割技术,以解决CD中的一般细分问题。因此,我们可以集中精力研究如何检测变化。我们提出了一种新颖而重要的见解,即CD中存在不同的变化类型,应分别学习它们。基于它,我们设计了一个名为MTF的模块来提取更改信息和融合时间功能。 MTF具有高解释性,并揭示了CD的基本特征。并且大多数分割网络都可以通过我们的MTF模块来解决CD问题。最后,我们提出了C-3PO,该网络可检测像素级别的变化。 C-3PO在没有铃铛和哨子的情况下实现最先进的表现。它很简单但有效,可以被视为该领域的新基线。我们的代码将可用。
translated by 谷歌翻译
几次拍摄的语义分割旨在将新颖的类对象分段为仅具有少数标记的支持图像。大多数高级解决方案利用度量学习框架,通过将每个查询功能与学习的类特定的原型匹配来执行分段。然而,由于特征比较不完整,该框架遭受了偏见的分类。为了解决这个问题,我们通过引入类别特定的和类别不可知的原型来提出自适应原型表示,从而构建与查询功能学习语义对齐的完整样本对。互补特征学习方式有效地丰富了特征比较,并有助于在几次拍摄设置中产生一个非偏见的分段模型。它用双分支端到端网络(\即,特定于类分支和类别不可知分支)实现,它生成原型,然后组合查询特征以执行比较。此外,所提出的类别无神不可话的分支简单而且有效。在实践中,它可以自适应地为查询图像生成多种类别 - 不可知的原型,并以自我对比方式学习特征对齐。广泛的Pascal-5 $ ^ i $和Coco-20 $ ^ i $展示了我们方法的优越性。在不牺牲推理效率的费用中,我们的模型实现了最先进的,导致1-Shot和5-Shot Settings进行语义分割。
translated by 谷歌翻译
使用卷积神经网络,面部属性(例如,年龄和吸引力)估算性能得到了大大提高。然而,现有方法在培训目标和评估度量之间存在不一致,因此它们可能是次优。此外,这些方法始终采用具有大量参数的图像分类或面部识别模型,其携带昂贵的计算成本和存储开销。在本文中,我们首先分析了两种最新方法(排名CNN和DLDL)之间的基本关系,并表明排名方法实际上是隐含的学习标签分布。因此,该结果首先将两个现有的最新方法统一到DLDL框架中。其次,为了减轻不一致和降低资源消耗,我们设计了一种轻量级网络架构,并提出了一个统一的框架,可以共同学习面部属性分发和回归属性值。在面部年龄和吸引力估算任务中都证明了我们的方法的有效性。我们的方法使用单一模型实现新的最先进的结果,使用36美元\倍,参数减少3美元,在面部年龄/吸引力估算上的推动速度为3美元。此外,即使参数的数量进一步降低到0.9m(3.8MB磁盘存储),我们的方法也可以实现与最先进的结果。
translated by 谷歌翻译
In this paper, we study the problem of knowledge-intensive text-to-SQL, in which domain knowledge is necessary to parse expert questions into SQL queries over domain-specific tables. We formalize this scenario by building a new Chinese benchmark KnowSQL consisting of domain-specific questions covering various domains. We then address this problem by presenting formulaic knowledge, rather than by annotating additional data examples. More concretely, we construct a formulaic knowledge bank as a domain knowledge base and propose a framework (ReGrouP) to leverage this formulaic knowledge during parsing. Experiments using ReGrouP demonstrate a significant 28.2% improvement overall on KnowSQL.
translated by 谷歌翻译
Weakly-supervised object localization aims to indicate the category as well as the scope of an object in an image given only the image-level labels. Most of the existing works are based on Class Activation Mapping (CAM) and endeavor to enlarge the discriminative area inside the activation map to perceive the whole object, yet ignore the co-occurrence confounder of the object and context (e.g., fish and water), which makes the model inspection hard to distinguish object boundaries. Besides, the use of CAM also brings a dilemma problem that the classification and localization always suffer from a performance gap and can not reach their highest accuracy simultaneously. In this paper, we propose a casual knowledge distillation method, dubbed KD-CI-CAM, to address these two under-explored issues in one go. More specifically, we tackle the co-occurrence context confounder problem via causal intervention (CI), which explores the causalities among image features, contexts, and categories to eliminate the biased object-context entanglement in the class activation maps. Based on the de-biased object feature, we additionally propose a multi-teacher causal distillation framework to balance the absorption of classification knowledge and localization knowledge during model training. Extensive experiments on several benchmarks demonstrate the effectiveness of KD-CI-CAM in learning clear object boundaries from confounding contexts and addressing the dilemma problem between classification and localization performance.
translated by 谷歌翻译
Dynamic treatment regimes assign personalized treatments to patients sequentially over time based on their baseline information and time-varying covariates. In mobile health applications, these covariates are typically collected at different frequencies over a long time horizon. In this paper, we propose a deep spectral Q-learning algorithm, which integrates principal component analysis (PCA) with deep Q-learning to handle the mixed frequency data. In theory, we prove that the mean return under the estimated optimal policy converges to that under the optimal one and establish its rate of convergence. The usefulness of our proposal is further illustrated via simulations and an application to a diabetes dataset.
translated by 谷歌翻译
Nowadays, time-stamped web documents related to a general news query floods spread throughout the Internet, and timeline summarization targets concisely summarizing the evolution trajectory of events along the timeline. Unlike traditional document summarization, timeline summarization needs to model the time series information of the input events and summarize important events in chronological order. To tackle this challenge, in this paper, we propose a Unified Timeline Summarizer (UTS) that can generate abstractive and extractive timeline summaries in time order. Concretely, in the encoder part, we propose a graph-based event encoder that relates multiple events according to their content dependency and learns a global representation of each event. In the decoder part, to ensure the chronological order of the abstractive summary, we propose to extract the feature of event-level attention in its generation process with sequential information remained and use it to simulate the evolutionary attention of the ground truth summary. The event-level attention can also be used to assist in extracting summary, where the extracted summary also comes in time sequence. We augment the previous Chinese large-scale timeline summarization dataset and collect a new English timeline dataset. Extensive experiments conducted on these datasets and on the out-of-domain Timeline 17 dataset show that UTS achieves state-of-the-art performance in terms of both automatic and human evaluations.
translated by 谷歌翻译
Hybrid unmanned aerial vehicles (UAVs) integrate the efficient forward flight of fixed-wing and vertical takeoff and landing (VTOL) capabilities of multicopter UAVs. This paper presents the modeling, control and simulation of a new type of hybrid micro-small UAVs, coined as lifting-wing quadcopters. The airframe orientation of the lifting wing needs to tilt a specific angle often within $ 45$ degrees, neither nearly $ 90$ nor approximately $ 0$ degrees. Compared with some convertiplane and tail-sitter UAVs, the lifting-wing quadcopter has a highly reliable structure, robust wind resistance, low cruise speed and reliable transition flight, making it potential to work fully-autonomous outdoor or some confined airspace indoor. In the modeling part, forces and moments generated by both lifting wing and rotors are considered. Based on the established model, a unified controller for the full flight phase is designed. The controller has the capability of uniformly treating the hovering and forward flight, and enables a continuous transition between two modes, depending on the velocity command. What is more, by taking rotor thrust and aerodynamic force under consideration simultaneously, a control allocation based on optimization is utilized to realize cooperative control for energy saving. Finally, comprehensive Hardware-In-the-Loop (HIL) simulations are performed to verify the advantages of the designed aircraft and the proposed controller.
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译