培训不同子模型的合奏在经验上已被证明是改善深度神经网络的对抗性鲁棒性的有效策略。图像识别的当前集合训练方法通常通过单速向量编码图像标签,从而忽略标签之间的依赖关系。在这里,我们提出了一种新颖的对抗训练方法,该方法可以共同了解标签和模型之间的条件依赖性。我们测试了广泛使用的数据集MNIST,FASIONMNIST和CIFAR-10的方法。结果表明,与最先进的方法相比,我们的方法对黑盒攻击更为强大。我们的代码可在https://github.com/zjlab-ammi/lsd上找到。
translated by 谷歌翻译
深度卷积神经网络(CNN)已被广泛用于各种医学成像任务。但是,由于卷积操作的内在局部性,CNN通常不能很好地对远距离依赖性进行建模,这对于准确识别或映射从未注册的多个乳房X线照片计算出的相应乳腺病变特征很重要。这促使我们利用多视觉视觉变形金刚的结构来捕获一项检查中同一患者的多个乳房X线照片的远程关系。为此,我们采用局部变压器块来分别学习从两侧(右/左)乳房的两视图(CC/MLO)获得的四个乳房X线照片中。来自不同视图和侧面的输出被串联并馈入全球变压器块,以共同学习四个代表左乳房和右乳房两种不同视图的图像之间的贴片关系。为了评估提出的模型,我们回顾性地组装了一个涉及949套乳房X线照片的数据集,其中包括470例恶性病例和479例正常情况或良性病例。我们使用五倍的交叉验证方法训练和评估了模型。没有任何艰苦的预处理步骤(例如,最佳的窗户裁剪,胸壁或胸肌去除,两视图图像注册等),我们的四个图像(两视频两侧)基于变压器的模型可实现案例分类性能在ROC曲线下的面积(AUC = 0.818),该区域的表现明显优于AUC = 0.784,而最先进的多视图CNN(p = 0.009)实现了0.784。它还胜过两个单方面模型,分别达到0.724(CC视图)和0.769(MLO视图)。该研究表明,使用变压器开发出高性能的计算机辅助诊断方案,这些方案结合了四个乳房X线照片。
translated by 谷歌翻译
对象目标视觉导航是一项具有挑战性的任务,旨在仅根据其视觉观察来指导机器人找到目标对象,并且该目标仅限于训练阶段中指定的类。但是,在实际家庭中,机器人可能需要处理许多对象类,并且在培训阶段,所有这些类都很难包含。为了应对这一挑战,我们通过将零照片学习与对象目标视频导航相结合,提出了一个零摄像的对象导航任务,该目标旨在指导机器人找到属于新颖类的对象而无需任何培训样本。这项任务导致需要将学习的政策推广到新颖的班级,这是使用深度强化学习的对象导航问题较小的问题。为了解决这个问题,我们利用“阶级无关”的数据来减轻培训阶段中指定的类过度拟合的输入。与类无关的输入包括检测结果和单词嵌入的余弦相似性,并且不包含任何与类相关的视觉特征或知识图。在AI2 Thor平台上进行的广泛实验表明,我们的模型在可见和看不见的类中都优于基线模型,这证明我们的模型对类别的敏感性较小,并且可以更好地概括。我们的代码可在https://github.com/pioneer-innovation/zero-sero-shot-object-navigation上找到
translated by 谷歌翻译
Gigapixel全斜面图像(WSIS)上的癌症预后一直是一项艰巨的任务。大多数现有方法仅着眼于单分辨率图像。利用图像金字塔增强WSI视觉表示的多分辨率方案尚未得到足够的关注。为了探索用于提高癌症预后准确性的多分辨率解决方案,本文提出了双流构建结构,以通过图像金字塔策略对WSI进行建模。该体系结构由两个子流组成:一个是用于低分辨率WSIS,另一个是针对高分辨率的WSIS。与其他方法相比,我们的方案具有三个亮点:(i)流和分辨率之间存在一对一的关系; (ii)添加了一个平方池层以对齐两个分辨率流的斑块,从而大大降低了计算成本并启用自然流特征融合; (iii)提出了一种基于跨注意的方法,以在低分辨率的指导下在空间上在空间上进行高分辨率斑块。我们验证了三个公共可用数据集的计划,来自1,911名患者的总数为3,101个WSI。实验结果验证(1)层次双流表示比单流的癌症预后更有效,在单个低分辨率和高分辨率流中,平均C-指数上升为5.0%和1.8% ; (2)我们的双流方案可以胜过当前最新方案,而C-Index的平均平均值为5.1%; (3)具有可观察到的生存差异的癌症疾病可能对模型复杂性具有不同的偏好。我们的计划可以作为进一步促进WSI预后研究的替代工具。
translated by 谷歌翻译
近年来,面部语义指导(包括面部地标,面部热图和面部解析图)和面部生成对抗网络(GAN)近年来已广泛用于盲面修复(BFR)。尽管现有的BFR方法在普通案例中取得了良好的性能,但这些解决方案在面对严重降解和姿势变化的图像时具有有限的弹性(例如,在现实世界情景中看起来右,左看,笑等)。在这项工作中,我们提出了一个精心设计的盲人面部修复网络,具有生成性面部先验。所提出的网络主要由非对称编解码器和stylegan2先验网络组成。在非对称编解码器中,我们采用混合的多路残留块(MMRB)来逐渐提取输入图像的弱纹理特征,从而可以更好地保留原始面部特征并避免过多的幻想。 MMRB也可以在其他网络中插入插件。此外,多亏了StyleGAN2模型的富裕和多样化的面部先验,我们采用了微调的方法来灵活地恢复自然和现实的面部细节。此外,一种新颖的自我监督训练策略是专门设计用于面部修复任务的,以使分配更接近目标并保持训练稳定性。关于合成和现实世界数据集的广泛实验表明,我们的模型在面部恢复和面部超分辨率任务方面取得了卓越的表现。
translated by 谷歌翻译
不同对象之间的闭塞是多对象跟踪(MOT)中的典型挑战,这通常导致由于丢失的检测到的对象导致较差的跟踪结果。多对象跟踪中的常见做法是重新识别出现后的错过对象。虽然重新识别可以提高跟踪性能,但是需要培训型号的身份的注释。此外,这种重新识别的做法仍然不能在探测器错过时跟踪那些高度遮挡的物体。在本文中,我们专注于在线多目标跟踪和设计两种新颖的模块,无监督的重新识别学习模块和遮挡估计模块,处理这些问题。具体地,所提出的无监督重新识别学习模块不需要任何(伪)身份信息,也不需要缩放性问题。所提出的遮挡估计模块尝试预测闭塞发生的位置,其用于估计探测器错过对象的位置。我们的研究表明,当应用于最先进的MOT方法时,所提出的无监督的重新识别学习与监督重新识别学习相当,并且通过所提出的遮挡估计模块进一步改善了跟踪性能。
translated by 谷歌翻译
随机重量平均(SWA)被认为是一种简单的,而一种有效的方法来改善随机梯度下降(SGD)的推广,用于训练深层神经网络(DNN)。解释其成功的常见见解是,在配备周期性或高常数学习率的SGD过程之后的平均权重可以发现更广泛的Optima,然后导致更好的泛化。我们给出了一个不同意上述内容的新洞察力。我们的表征,SWA的性能高度依赖于SWA收敛前运行的SGD进程的程度,并且权重平均的操作仅有助于减少方差。这种新的Insight表明了更好的算法设计上的实用指南。作为一个实例化,我们表明,随着收敛不足的SGD过程,运行SWA更多次导致泛化方面的持续增量益处。我们的发现在不同网络架构上的广泛实验得到了证实,包括基线CNN,PRERESNET-164,WieresNetNet-28-10,VGG16,Resnet-50,Reset-152,DenSenet-161和不同的数据集,包括CiFar- {10,100}和想象因。
translated by 谷歌翻译
解决纳米级的形态学化相变对各种学科的许多科学和工业应用至关重要。通过组合全场传输X射线显微镜(TXM)和X射线吸收附近边缘结构(XANES)的TXM-XANES成像技术是通过获取具有多能量X的一系列显微镜图像来操作的新兴工具 - 接合并配合以获得化学图。然而,由于系统误差和用于快速采集的低曝光照明,其能力受到差的信噪比差的限制。在这项工作中,通过利用TXM-XANES成像数据的内在属性和子空间建模,我们引入了一种简单且坚固的去噪方法来提高图像质量,这使得能够快速和高灵敏度的化学成像。对合成和实时数据集的广泛实验证明了该方法的优越性。
translated by 谷歌翻译
由于关键字相关互联网页面的返回,根据关键字检索的搜索引擎不再适应智能互联网时代的信息获取方式。如何快速,准确和有效地获取来自大规模互联网数据的用户所需的信息已成为迫切需要解决的关键问题之一。我们提出了一个基于结构化KB和非结构化数据的智能质疑答案系统,称为OpenQA,其中用户可以提供查询问题,并且模型可以快速向用户提供准确的答案。我们基于语义解析和深度表示学习的KBQA结构化问题回答,以及基于检索和神经机阅读理解的两级非结构化问题回答,并通过OpenQA中的变压器应答选择模块回归最高概率的最终答案。我们对我们构建的数据集进行了初步实验,实验结果证明了提出的智能问题应答系统的有效性。与此同时,OpenQA平台的每个模块的核心技术仍处于学术热点的最前沿,并基于这些学术热点进一步探索了OpenQA的理论本质和富集。
translated by 谷歌翻译
大多数用于加强学习中的多武装强盗问题的算法旨在最大化预期的奖励,从而可用于搜索具有最高奖励(功能值)的优化候选者,用于各种应用(例如,alphango)。然而,在药物发现的一些典型应用方案中,目的是在高奖励中搜索多样化的候选人。在这里,我们提出了一种可逆的上置信度(RUCB)算法,用于这种目的,并证明其在虚拟筛选时在本质上无序的蛋白质(IDP)中的应用。结果表明,RUCB大大减少了查询时间,同时实现了高精度和低性能损失。RUCB可能具有在多点优化和其他增强学区的潜在应用。
translated by 谷歌翻译