由于稀疏神经网络通常包含许多零权重,因此可以在不降低网络性能的情况下潜在地消除这些不必要的网络连接。因此,设计良好的稀疏神经网络具有显着降低拖鞋和计算资源的潜力。在这项工作中,我们提出了一种新的自动修剪方法 - 稀疏连接学习(SCL)。具体地,重量被重新参数化为可培训权重变量和二进制掩模的元素方向乘法。因此,由二进制掩模完全描述网络连接,其由单位步进函数调制。理论上,从理论上证明了使用直通估计器(STE)进行网络修剪的基本原理。这一原则是STE的代理梯度应该是积极的,确保掩模变量在其最小值处收敛。在找到泄漏的Relu后,SoftPlus和Identity Stes可以满足这个原理,我们建议采用SCL的身份STE以进行离散面膜松弛。我们发现不同特征的面具梯度非常不平衡,因此,我们建议将每个特征的掩模梯度标准化以优化掩码变量训练。为了自动训练稀疏掩码,我们将网络连接总数作为我们的客观函数中的正则化术语。由于SCL不需要由网络层设计人员定义的修剪标准或超级参数,因此在更大的假设空间中探讨了网络,以实现最佳性能的优化稀疏连接。 SCL克服了现有自动修剪方法的局限性。实验结果表明,SCL可以自动学习并选择各种基线网络结构的重要网络连接。 SCL培训的深度学习模型以稀疏性,精度和减少脚波特的SOTA人类设计和自动修剪方法训练。
translated by 谷歌翻译
一种可以推广到看不见的对比和扫描仪设置的器官分割方法可以显着减少对深度学习模型的重新培训的需求。域概括(DG)旨在实现这一目标。但是,大多数用于分割的DG方法都需要训练期间来自多个领域的训练数据。我们提出了一种针对从\ emph {single}域的数据训练的器官分割的新型对抗域的概括方法。我们通过学习对抗结构域合成器(AD)合成新域,并假定合成域覆盖了足够大的合理分布区域,以便可以从合成域中插值看不见的域。我们提出了一个共同的信息正常化程序,以实现合成域中图像之间的语义一致性,可以通过贴片级对比度学习来估计。我们评估了各种器官分割的方法,以进行看不见的模式,扫描协议和扫描仪位点。
translated by 谷歌翻译
深度推荐系统共同利用检索和排名操作来产生建议结果。猎犬的目标是从整个项目中选择一小部分相关候选人,并具有高效率;尽管通常更精确但耗时的排名者应该以高精度识别检索到的候选人中的最佳项目。但是,猎犬和排名通常以较差的方式接受培训,从而在整体工作时会导致建议表现有限。在这项工作中,我们提出了一个新颖的DRS培训框架Corr(合作猎犬和Ranker的缩写),可以在其中相互加强猎犬和Ranker。一方面,从推荐数据和通过知识蒸馏的排名中学到了猎犬​​。知道排名更精确,知识蒸馏可能会为改善检索质量提供额外的弱点信号。另一方面,通过学习将真相的积极项目与从猎犬采样的硬性负面候选人中区分出来,对排名者进行了训练。随着迭代的进行,排名可能会变得更加精确,作为回报,这引起了猎犬的信息培训信号。同时,随着猎犬的改善,可以采样较难的负候选者,这有助于排名更高的判别能力。为了促进CORR的有效行为,引入了KL差异的渐近均匀近似,以便对采样项目进行知识蒸馏。此外,开发了一种可扩展和自适应策略,以有效地从猎犬那里进行采样。全面的实验研究是在四个大规模基准数据集中进行的,其中CORR改善了由于猎犬和Ranker之间的合作而产生的总体建议质量。
translated by 谷歌翻译
神经体系结构搜索方法寻求具有有效的体重共享超级网训练的最佳候选者。但是,最近的研究表明,关于独立架构和共享重量网络之间的性能的排名一致性差。在本文中,我们提出了提前引导的一声NAS(PGONA),以加强超级网的排名相关性。具体而言,我们首先探讨激活功能的效果,并提出基于三明治规则的平衡采样策略,以减轻超级网中的重量耦合。然后,采用了拖鞋和禅宗得分来指导超级网的训练,并具有排名相关性损失。我们的PGONA在CVPR2022第二轻型NAS挑战赛的SuperNet轨道中排名第三。代码可在https://github.com/pprp/cvpr2022-nas?competition-track1-3th-solution中找到。
translated by 谷歌翻译
变压器已被广泛用于整个幻灯片图像(WSI)分类,以进行肿瘤分级,预后分析等。然而,在公共变压器中,在令牌上的自我注意和位置嵌入策略的设计限制了有效性和效率在Gigapixel组织病理学图像的应用中。在本文中,我们提出了一个用于组织病理学WSI分类的内核注意变压器(KAT)。代币的信息传输是通过令牌与与WSI上一组位置锚有关的一组内核之间的交叉注意来实现的。与共同的变压器结构相比,提出的KAT可以更好地描述WSI局部区域的层次上下文信息,同时保持较低的计算复杂性。在具有2040 WSI的胃数据集和具有2560 WSIS的子宫内膜数据集上评估了该方法,并与6种最先进的方法进行了比较。实验结果表明,所提出的KAT在组织病理学WSI分类的任务中有效有效,并且优于最新方法。该代码可在https://github.com/zhengyushan/kat上找到。
translated by 谷歌翻译
局部表示学习是促进组织病理学整体幻灯片图像分析的性能的关键挑战。先前的表示学习方法遵循监督学习范式。但是,大规模WSIS的手动注释是耗时且劳动力密集的。因此,自我监督的对比学习最近引起了密集的关注。目前的对比学习方法将每个样本视为一个类别,这遭受了类碰撞问题,尤其是在组织病理学图像分析的领域。在本文中,我们提出了一个新颖的对比表示学习框架,称为病变感染对比学习(LACL),用于组织病理学整个幻灯片图像分析。我们基于内存库结构建立了病变队列,以存储不同类别WSIS的表示形式,这使对比模型可以在训练过程中选择性定义负面对。此外,我们设计了一个队列改进策略,以净化病变队列中存储的表示形式。实验结果表明,LACL在不同数据集上学习在组织病理学图像表示学习中的最佳性能,并且在不同的WSI分类基准下的最先进方法优于最先进的方法。该代码可在https://github.com/junl21/lacl上获得。
translated by 谷歌翻译
植物点云的分割以获得高精度的形态特征对于植物表型和作物育种至关重要。尽管深度学习方法的绽放促进了对植物点云的分割的大量研究,但大多数作品遵循基于硬素化或基于下采样的方法的共同实践。它们仅限于细分简单的植物器官,忽略了解决具有高空间分辨率的复杂植物点云的困难。在这项研究中,我们提出了一个深度学习网络分割变压器(PST),以实现MLS(移动激光扫描)油料种子强奸点云的语义和实例分割,该强奸点云将其特征在于微小的硅酸盐和致密点作为主要特征。 PST由:(i)一个动态体素特征编码器(DVFE),可通过原始空间分辨率进行每个点特征聚集; (ii)双窗口设置注意力块以捕获上下文信息; (iii)一个密集的特征传播模块,以获得最终的致密点特征图。结果证明,PST和PST-PointGroup(PG)在语义和实例分段任务中实现了最新性能。对于语义细分,PST分别达到93.96%,97.29%,96.52%,96.88%和97.07%的平均值,平均精度,平均召回率,平均F1得分和整体准确性。例如,在MCOV,MWCOV,MPERC90和MREC90中,分割的PST-PG分别达到89.51%,89.85%,88.83%和82.53%。这项研究以端到端的方式扩展了油料强奸的表型,并证明了深度学习方法具有巨大的潜力,可以理解具有复杂形态特征的密集植物点云。
translated by 谷歌翻译
我们考虑了个性化新闻推荐的问题,每个用户都以顺序消费新闻。现有的个性化新闻推荐方法的重点是利用用户兴趣,而忽略了推荐中的探索,从而导致反馈循环并长期损害了建议质量。我们基于上下文土匪推荐策略,自然可以解决剥削 - 探索权衡取舍。主要挑战是探索大规模项目空间并利用不确定性的深层表示的计算效率。我们提出了一个两阶段的分层主题,新的深层上下文强盗框架,以在有许多新闻项目时有效地学习用户偏好。我们为用户和新闻使用深度学习表示形式,并将神经上限限制(UCB)策略推广到广义添加剂UCB和BILINEAR UCB。大规模新闻建议数据集的经验结果表明,我们提出的政策是有效的,并且表现优于基线匪徒政策。
translated by 谷歌翻译
我们提出了一个简单而有效的自我监督框架,用于视听表示学习,以将声源定位在视频中。为了了解什么使能够学习有用的表示形式,我们系统地研究了数据增强的效果,并揭示(1)数据增强的组成起着关键作用,{\ em I.E.}〜明确鼓励音频表征是不变的各种转换〜({\ em转换不变性}); (2)强制执行几何一致性基本上提高了学会表示的质量,{\ em,即}〜所检测到的声源应遵循在输入视频帧〜({\ em em transive equivarianciance})上应用的相同转换。广泛的实验表明,我们的模型在两个声音定位基准上的先前方法(即Flickr-soundnet和vgg-sounds)都显着优于先前的方法。此外,我们还评估了音频检索和跨模式检索任务。在这两种情况下,我们的自我监管模型都表现出了出色的检索性能,甚至在音频检索中具有监督方法竞争。这揭示了所提出的框架学会了强大的多模式表示,这些表示有益于声音定位和对进一步应用的概括。 \ textIt {所有代码都将可用}。
translated by 谷歌翻译
Axie Infinity是一款复杂的纸牌游戏,具有巨大的动作空间。这使得很难使用通用增强学习(RL)算法解决这一挑战。我们提出了一个混合RL框架来学习行动表示和游戏策略。为了避免评估大型可行动作集中的每个动作,我们的方法评估使用动作表示确定的固定大小集中的动作。我们将方法的性能与其他两个基线方法的样本效率和受过训练模型的获胜率进行了比较。我们从经验上表明,我们的方法达到了三种方法中总体上最佳的获胜率和最佳样本效率。
translated by 谷歌翻译