While deep learning succeeds in a wide range of tasks, it highly depends on the massive collection of annotated data which is expensive and time-consuming. To lower the cost of data annotation, active learning has been proposed to interactively query an oracle to annotate a small proportion of informative samples in an unlabeled dataset. Inspired by the fact that the samples with higher loss are usually more informative to the model than the samples with lower loss, in this paper we present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss. The core of our approach is a measurement Temporal Output Discrepancy (TOD) that estimates the sample loss by evaluating the discrepancy of outputs given by models at different optimization steps. Our theoretical investigation shows that TOD lower-bounds the accumulated sample loss thus it can be used to select informative unlabeled samples. On basis of TOD, we further develop an effective unlabeled data sampling strategy as well as an unsupervised learning criterion for active learning. Due to the simplicity of TOD, our methods are efficient, flexible, and task-agnostic. Extensive experimental results demonstrate that our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks. In addition, we show that TOD can be utilized to select the best model of potentially the highest testing accuracy from a pool of candidate models.
translated by 谷歌翻译
Recent deep learning methods have achieved promising results in image shadow removal. However, their restored images still suffer from unsatisfactory boundary artifacts, due to the lack of degradation prior embedding and the deficiency in modeling capacity. Our work addresses these issues by proposing a unified diffusion framework that integrates both the image and degradation priors for highly effective shadow removal. In detail, we first propose a shadow degradation model, which inspires us to build a novel unrolling diffusion model, dubbed ShandowDiffusion. It remarkably improves the model's capacity in shadow removal via progressively refining the desired output with both degradation prior and diffusive generative prior, which by nature can serve as a new strong baseline for image restoration. Furthermore, ShadowDiffusion progressively refines the estimated shadow mask as an auxiliary task of the diffusion generator, which leads to more accurate and robust shadow-free image generation. We conduct extensive experiments on three popular public datasets, including ISTD, ISTD+, and SRD, to validate our method's effectiveness. Compared to the state-of-the-art methods, our model achieves a significant improvement in terms of PSNR, increasing from 31.69dB to 34.73dB over SRD dataset.
translated by 谷歌翻译
我们建议一个基于深入强化学习的经理工作框架,以解决旅行推销员问题(TSP)的艰难而又非平凡的变体,\ ie〜有时间窗口和拒绝(MTSPTWR)的多车辆TSP(MTSPTWR),在此之前无法服务的客户截止日期将受到拒绝。特别是,在拟议的框架中,经理代理人通过基于图形同构网络(GIN)的策略网络将客户分配给每辆车,从而将MTSPTWR分为子路由任务。工人代理人通过根据每辆车的旅行长度和拒绝率来最大程度地降低成本来解决子路由任务,然后将其最多的最大值送回经理代理以学习更好的任务。实验结果表明,所提出的框架在更高的解决方案质量和较短的计算时间方面优于强基础。更重要的是,训练有素的代理商还取得了竞争性能,以解决看不见的较大实例。
translated by 谷歌翻译
基于预训练的深层模型的图像恢复方案由于解决各种反问题的独特灵活性,因此受到了极大的关注。尤其是,插件播放(PNP)框架是一种流行而强大的工具,可以将现成的深层Denoiser集成,以与已知的观察模型一起,以用于不同的图像恢复任务。但是,在实践中,获得与实际情况完全匹配的观察模型可能具有挑战性。因此,带有常规深地位者的PNP方案可能无法在某些现实世界图像恢复任务中产生令人满意的结果。我们认为,通过使用经过确定性优化训练的现成的深层DENOISER,PNP框架的鲁棒性在很大程度上受到限制。为此,我们提出了一种新颖的深钢筋学习(DRL),以称为Repnp的PNP框架,通过利用基于轻巧的DRL的DENOISER来制定可靠的图像恢复任务。实验结果表明,所提出的REPNP对与实际情况的PNP方案中使用的观察模型具有鲁棒性。因此,RepNP可以为图像脱张和超级分辨率任务生成更可靠的恢复结果。与几个最先进的深层图像恢复基线相比,RepNP可以通过更少的模型参数实现更好的模型偏差的结果。
translated by 谷歌翻译
有时将儿童的认知能力视为AI基准。在自然主义儿童的环境中,如何学习最常见的1,000个概念(每天使用的89%)?儿童的认知发展是关于质量的,可以通过简单的例子传达新概念。我们的知识脚手架方法使用简单的对象和动作来传达概念,例如如何教授孩子。我们介绍了ABCDE,这是一种以典型的儿童游戏室为基础的交互式3D环境。它带有300多个唯一的3D对象资产(主要是玩具),以及一个宽敞的动作空间,可供孩子和父代理与对象互动。ABCDE是旨在模仿儿童认知发展的自然主义环境的第一个环境。没有其他环境通过学习者的互动来研究高级概念学习。可以在https://pypi.org/project/abcdesim/1.0.0/上找到模拟器
translated by 谷歌翻译
在低灯条件下捕获的图像遭受低可视性和各种成像伪影,例如真实噪音。现有的监督启示算法需要大量的像素对齐的训练图像对,这很难在实践中准备。虽然弱监督或无人监督的方法可以缓解这些挑战,但不使用配对的训练图像,由于缺乏相应的监督,一些现实世界的文物不可避免地被错误地放大。在本文中,而不是使用完美的对齐图像进行培训,我们创造性地使用未对准的现实世界图像作为指导,这很容易收集。具体地,我们提出了一个交叉图像解剖线程(CIDN),以分别提取来自低/常光图像的交叉图像亮度和图像特定内容特征。基于此,CIDN可以同时校正特征域中的亮度和抑制图像伪像,其在很大程度上将鲁棒性增加到像素偏移。此外,我们收集了一个新的低光图像增强数据集,包括具有现实世界腐败的未对准培训图像。实验结果表明,我们的模型在新建议的数据集和其他流行的低光数据集中实现了最先进的表演。
translated by 谷歌翻译
图像恢复中的一个根本挑战是去噪,目标是从其嘈杂的测量中估计清洁图像。为了解决这种不良反对问题,现有的去噪方法通常专注于利用有效的自然图像前提。噪声模型的利用和分析通常被忽略,尽管噪声模型可以向去噪算法提供互补信息。在本文中,我们提出了一种新的流基的联合图像和噪声模型(Fino),其明显地与潜在空间中的图像和噪声分离,并且无损地通过一系列可逆的转换来重建它们。我们进一步提出了一种可变交换策略,以对准图像的结构信息和噪声相关矩阵,以基于空间最小化相关信息来限制噪声。实验结果表明,Fino去除合成添加剂白高斯噪声(AWGN)和真实噪音的能力。此外,铜的概括到除去空间变体噪声和具有不准确估计的噪声的噪声超越了大幅边缘的流行和最先进的方法。
translated by 谷歌翻译
精确预测物理交互结果是人类智能的关键组成部分,对于真实世界中的机器人安全和有效地部署是重要的。虽然存在基于视觉的直观物理模型,用于学习预测物理交互结果,而它们主要专注于根据从视觉输入或潜在空间提取的物理性质(例如质量,摩擦和速度)产生未来框架的短序列。然而,缺乏直观的物理模型,这些模型是在具有不同对象之间的多个交互的长物理相互作用序列上进行测试。我们假设在近似精神模拟期间的选择性时间关注有助于人类在物理相互作用结果预测中。通过这些动机,我们提出了一种新颖的方案:通过用跨度选择(PIP)通过精神模拟物理交互预测。它利用深度生成模型来模拟近似精神模拟,通过在采用跨度选择的形式以预测物理交互结果的形式中采用选择性的时间关注之前产生近似的物理相互作用。为了评估我们的模型,我们进一步提出了具有3D环境中的三个主要物理交互的长序列的大规模空间+数据集。我们的实验表明,PIP优于利用精神模拟的人类,基线和相关直观的物理模型。此外,PIP的跨度选择模块有效地识别指示对象之间的关键物理交互的帧,允许添加额外的解释性。
translated by 谷歌翻译
Knowledge graph embedding (KGE), which maps entities and relations in a knowledge graph into continuous vector spaces, has achieved great success in predicting missing links in knowledge graphs. However, knowledge graphs often contain incomplete triples that are difficult to inductively infer by KGEs. To address this challenge, we resort to analogical inference and propose a novel and general self-supervised framework AnKGE to enhance KGE models with analogical inference capability. We propose an analogical object retriever that retrieves appropriate analogical objects from entity-level, relation-level, and triple-level. And in AnKGE, we train an analogy function for each level of analogical inference with the original element embedding from a well-trained KGE model as input, which outputs the analogical object embedding. In order to combine inductive inference capability from the original KGE model and analogical inference capability enhanced by AnKGE, we interpolate the analogy score with the base model score and introduce the adaptive weights in the score function for prediction. Through extensive experiments on FB15k-237 and WN18RR datasets, we show that AnKGE achieves competitive results on link prediction task and well performs analogical inference.
translated by 谷歌翻译
For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there is no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion-batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.
translated by 谷歌翻译