通过优化农业管理实践来维持农场的可持续性有助于建立更适合星球的环境。新兴的卫星任务可以获取多光谱图像,从而捕获有关扫描区域的更详细的光谱信息,因此,在农业应用中的分析过程中,我们可以从细微的光谱特征中受益。我们介绍了一种从10 m Sentinel-2多光谱图像系列中提取2.5 m栽培地图的方法,该图像受益于紧凑型卷积神经网络。实验表明,与U-NET相比,我们的模型不仅通过提供更高质量的分割图来超过经典和深度的机器学习技术,而且还可以大大减少内存足迹(我们的模型的几乎可训练的参数,最多具有31m参数的参数U-nets)。在任务中,这种记忆节俭是关键的,这使我们能够在轨道进入轨道后将模型链接到AI驱动的卫星,因为由于时间限制,不可能发送大型网。
translated by 谷歌翻译