在分析此类数据中,高光谱脉冲仍然是最具挑战性的任务之一。深度学习一直在田野上盛开,并被证明超过了其他经典的不混合技术,并且可以有效地部署在配备高光谱成像器的地球观察卫星上。在这封信中,我们遵循这一研究途径,并提出了一个多分支卷积神经网络,该网络受益于融合过程中的光谱,空间和光谱空间特征。我们的实验结果得到了消融研究的支持,表明我们的技术从文献中优于其他人,而导致了更高质量的分数丰度估计。此外,我们研究了减少训练集对所有算法及其对噪音的稳健性的影响的影响,因为捕获大型且代表性的地面真相集是耗时且在实践中成本高昂的,尤其是在新兴的地球观察方案中。
translated by 谷歌翻译
通过优化农业管理实践来维持农场的可持续性有助于建立更适合星球的环境。新兴的卫星任务可以获取多光谱图像,从而捕获有关扫描区域的更详细的光谱信息,因此,在农业应用中的分析过程中,我们可以从细微的光谱特征中受益。我们介绍了一种从10 m Sentinel-2多光谱图像系列中提取2.5 m栽培地图的方法,该图像受益于紧凑型卷积神经网络。实验表明,与U-NET相比,我们的模型不仅通过提供更高质量的分割图来超过经典和深度的机器学习技术,而且还可以大大减少内存足迹(我们的模型的几乎可训练的参数,最多具有31m参数的参数U-nets)。在任务中,这种记忆节俭是关键的,这使我们能够在轨道进入轨道后将模型链接到AI驱动的卫星,因为由于时间限制,不可能发送大型网。
translated by 谷歌翻译
时间序列预测是许多人类活动的关键任务,例如天气预报或预测股价。解决此问题的一种解决方案是使用复发性神经网络(RNN)。尽管它们可以产生准确的预测,但他们的学习过程缓慢而复杂。在这里,我们提出了一个量子复发的神经网络(QRNN)来解决这些障碍。网络的设计基于连续变量的量子计算范式。我们证明网络能够学习一些类型的时间数据的时间依赖性。我们的数值模拟表明,与经典网络相比,QRNN收敛到最佳权重。此外,对于少数可训练的参数,它可以实现比后者更低的损失。
translated by 谷歌翻译
我们在本文中提出了在循环中建立深度神经网络和人类之间的合作,以迅速获得遥感图像的准确分割图。简而言之,代理商迭代地与网络交互以纠正其最初缺陷的预测。具体地,这些相互作用是代表语义标签的注释。我们的方法论贡献是双重的。首先,我们提出了两个交互式学习计划,将用户输入集成到深神经网络中。第一个将注释连接到其他网络的输入。第二个将注释用作稀疏的地面真相来培训网络。其次,我们提出了一种积极的学习策略,以指导用户对诠释的最相关的领域。为此目的,我们比较不同的最先进的获取功能来评估神经网络不确定性,如Confidnet,熵或odin。通过对三个遥感数据集的实验,我们展示了所提出的方法的有效性。值得注意的是,我们表明基于不确定性估计的主动学习使能够快速引导用户对错误而导致错误,因此它与引导用户干预相关联。
translated by 谷歌翻译
转移学习是一种强大的方法,可以使现有的深度学习模型在遥感中新兴利用案例调整。从已经接受了语义分割的神经网络开始,我们建议修改其标签空间以在弱势监督下将其迅速调整到新课程。为了缓解这种形式的连续学习固有的背景转变和灾难性的遗忘问题,我们比较不同的正则化条款并利用伪标签策略。我们通过实验显示了我们在三个公共遥感数据集中的方法的相关性。
translated by 谷歌翻译
从众包标签或公开的数据创建的大规模数据集已经至关重要,为大规模学习算法提供培训数据。虽然这些数据集更容易获取,但数据经常嘈杂和不可靠,这是对弱监督学习技术的激励研究。在本文中,我们提出了原始想法,帮助我们在变更检测的背景下利用此类数据集。首先,我们提出了引导的各向异性扩散(GAD)算法,其使用输入图像改善语义分割结果作为执行边缘保留滤波的引导件。然后,我们展示了它在改变检测中量身定制的两个弱监督的学习策略中的潜力。第一策略是一种迭代学习方法,它将模型优化和数据清理使用GAD从开放矢量数据生成的大规模改变检测数据集中提取有用信息。第二个在新的空间注意层内包含GAD,其增加训练训练的弱监管网络的准确性,以从图像级标签执行像素级预测。在4个不同的公共数据集上展示了关于最先进的最先进的改进。
translated by 谷歌翻译
本文旨在研究基于电路的混合量子卷积神经网络(QCNNS)如何在遥感的上下文中成功地在图像分类器中成功使用。通过在标准神经网络内引入量子层来丰富CNN的经典架构。本工作中提出的新型QCNN应用于土地使用和陆地覆盖(LULC)分类,选择为地球观测(EO)用例,并在欧元区数据集上测试用作参考基准。通过证明QCNN性能高于经典对应物,多标量分类的结果证明了所提出的方法的有效性。此外,各种量子电路的研究表明,利用量子纠缠的诸如最佳分类评分。本研究强调了将量子计算应用于EO案例研究的潜在能力,并为期货调查提供了理论和实验背景。
translated by 谷歌翻译
数字商务泛化的黑暗面是欺诈尝试的增加。为防止任何类型的攻击,现代最先进的欺诈检测系统现在嵌入机器学习(ML)模块。这种模块的概念仅在研究水平上传达,论文主要关注孤立的基准数据集和度量的结果。但研究只是旅程的一部分,前面是业务问题的正确制定以及数据集合,然后是实际集成。在本文中,我们对该过程进行了更广泛的愿景,就转让学习进行欺诈检测,从企业进行研究,回到业务。
translated by 谷歌翻译
计算优化问题解决方案解决方案的雅各布是机器学习中的一个核心问题,其应用程序在超参数优化,元学习,优化为层和数据集蒸馏中的应用程序,仅举几例。展开的分化是一种流行的启发式方法,它使用迭代求解器近似溶液,并通过计算路径区分它。这项工作提供了对梯度下降和Chebyshev方法的二次目标的这种方法的非反应收敛速率分析。我们表明,为了确保雅各布的融合,我们可以1)选择较大的学习率,导致快速渐近地收敛,但接受该算法可能具有任意长的燃烧阶段或2)选择较小的学习率直接但较慢的收敛性。我们将这种现象称为展开的诅咒。最后,我们讨论了相对于这种方法的开放问题,例如为最佳展开策略得出实用的更新规则,并与Sobolev正交多项式领域建立了新的联系。
translated by 谷歌翻译
黑框模型的鲁棒性研究被认为是基于结构方程和从数据中学到的预测模型的数值模型的必要任务。这些研究必须评估模型的鲁棒性,以实现其输入的可能错误指定(例如,协变量转移)。通过不确定性定量(UQ)的棱镜对黑盒模型的研究通常基于涉及输入上施加的概率结构的灵敏度分析,而ML模型仅由观察到的数据构建。我们的工作旨在通过为这两个范式提供相关且易于使用的工具来统一UQ和ML可解释性方法。为了为鲁棒性研究提供一个通用且易于理解的框架,我们定义了依赖于概率指标之间的瓦斯汀距离的分位数约束和投影的输入信息的扰动,同时保留其依赖性结构。我们表明,可以通过分析解决这个扰动问题。通过等渗多项式近似确保规律性约束会导致更平滑的扰动,这在实践中可能更适合。从UQ和ML领域进行的实际案例研究的数值实验突出了此类研究的计算可行性,并提供了对黑盒模型鲁棒性的局部和全球见解,以输入扰动。
translated by 谷歌翻译