胎儿超声(US)中胎盘的自动分割由于(i)(i)胎盘外观的高度多样性而具有挑战性我们禁止在妊娠晚期进行整个胎盘评估的观点。在这项工作中,我们通过多任务学习方法解决了这三个挑战,该方法结合了单个卷积神经网络中胎盘位置(例如,前,后部)和语义胎盘分段的分类。通过分类任务,模型可以从更大,更多样化的数据集中学习,同时在有限的训练集条件下提高分割任务的准确性。通过这种方法,我们研究了多个评估者的注释的变异性,并表明我们的自动分割(前胎盘的骰子为0.86,后胎盘的骰子为0.83),与观察者内和观察者间的变异性相比,我们的自动段性能达到了人级的性能。最后,我们的方法可以使用由三个阶段组成的多视图US采集管道提供整个胎盘分割:多探针图像采集,图像融合和图像分段。这会导致对较大结构(例如胎盘中的胎盘)的高质量分割,其图像伪像降低,这超出了单个探针的视野。
translated by 谷歌翻译
医学图像分析是一个充满活力的研究领域,为医生和医生提供了宝贵的见解以及准确诊断和监测疾病的能力。机器学习为该领域提供了额外的提升。但是,用于医学图像分析的机器学习尤其容易受到自然偏见的影响,例如影响算法性能和鲁棒性的域移位。在本文中,我们在技术准备水平的框架内分析了机器学习,以进行医学图像分析,并回顾因果分析方法在创建健壮且适应性的医学图像分析算法时如何填补空白。我们在医学成像AI/ML中使用因果关系回顾方法,发现因果分析有可能减轻临床翻译的关键问题,但是到目前为止,摄取和临床下游研究受到限制。
translated by 谷歌翻译
有因果关系的机器学习框架可以通过回答反事实问题来帮助临床医生确定最佳治疗方法。我们通过研究左心室射血分数的变化来探索超声心动图的情况,这是从这些检查中获得的最重要的临床指标。我们首次结合了深层神经网络,双因果网络和生成的对抗方法,以建立一种新颖的因果生成模型,这是建立D'Artagnan(深人造双胞胎生成网络)。在将其应用于心脏超声视频之前,我们在合成数据集上证明了我们的方法的合理性,以回答以下问题:“如果患者的射血分数不同,则超声心动图会怎样?”。为此,我们生成了新的超声视频,保留了原始患者的视频样式和解剖学,同时修改了以给定输入为条件的射血分数。我们在反事实视频中获得0.79的SSIM分数为0.79,R2得分为0.51。代码和型号可在以下网址提供:https://github.com/hreynaud/dartagnan。
translated by 谷歌翻译
本文介绍了多智能体增强学习(MARL)在医学成像中执行3D解剖卷中的导航。我们利用神经风格转移来创建合成计算机断层扫描(CT)代理体房环境,并评估我们代理商的普遍性能力至临床CT卷。我们的框架不需要任何标记的临床数据,并通过多种图像翻译技术轻松集成,从而实现跨模式应用程序。此外,我们仅在2D片上调节我们的代理,在更加困难的成像模型中打破3D引导的地面,例如超声成像。这是在获取标准化诊断视图飞机期间对用户指导的重要一步,提高诊断一致性,并促进更好的案例比较。
translated by 谷歌翻译
反事实推断是一种强大的工具,能够解决备受瞩目的领域中具有挑战性的问题。要进行反事实推断,需要了解潜在的因果机制。但是,仅凭观察和干预措施就不能独特地确定因果机制。这就提出了一个问题,即如何选择因果机制,以便在给定领域中值得信赖。在具有二进制变量的因果模型中已经解决了这个问题,但是分类变量的情况仍未得到解答。我们通过为具有分类变量的因果模型引入反事实排序的概念来应对这一挑战。为了学习满足这些约束的因果机制,并对它们进行反事实推断,我们引入了深层双胞胎网络。这些是深层神经网络,在受过训练的情况下,可以进行双网络反事实推断 - 一种替代绑架,动作和预测方法的替代方法。我们从经验上测试了来自医学,流行病学和金融的多种现实世界和半合成数据的方法,并报告了反事实概率的准确估算,同时证明了反事实订购时不执行反事实的问题。
translated by 谷歌翻译
尽管自动图像分析的重要性不断增加,但最近的元研究揭示了有关算法验证的主要缺陷。性能指标对于使用的自动算法的有意义,客观和透明的性能评估和验证尤其是关键,但是在使用特定的指标进行给定的图像分析任务时,对实际陷阱的关注相对较少。这些通常与(1)无视固有的度量属性,例如在存在类不平衡或小目标结构的情况下的行为,(2)无视固有的数据集属性,例如测试的非独立性案例和(3)无视指标应反映的实际生物医学领域的兴趣。该动态文档的目的是说明图像分析领域通常应用的性能指标的重要局限性。在这种情况下,它重点介绍了可以用作图像级分类,语义分割,实例分割或对象检测任务的生物医学图像分析问题。当前版本是基于由全球60多家机构的国际图像分析专家进行的关于指标的Delphi流程。
translated by 谷歌翻译
适当地表示数据库中的元素,以便可以准确匹配查询是信息检索的核心任务;最近,通过使用各种指标将数据库的图形结构嵌入层次结构的方式中来实现。持久性同源性是一种在拓扑数据分析中常用的工具,能够严格地以其层次结构和连接结构来表征数据库。计算各种嵌入式数据集上的持续同源性表明,一些常用的嵌入式无法保留连接性。我们表明,那些成功保留数据库拓扑的嵌入通过引入两种扩张不变的比较措施来捕获这种效果,尤其是解决了对流形的度量扭曲问题。我们为它们的计算提供了一种算法,该算法大大降低了现有方法的时间复杂性。我们使用这些措施来执行基于拓扑的信息检索的第一个实例,并证明了其在持久同源性的标准瓶颈距离上的性能提高。我们在不同数据品种的数据库中展示了我们的方法,包括文本,视频和医学图像。
translated by 谷歌翻译
虚拟测试是确保自动驾驶安全性的至关重要的任务,而传感器仿真是该域中的重要任务。大多数当前的激光雷达模拟非常简单,主要用于执行初始测试,而大多数见解是在道路上收集的。在本文中,我们提出了一种轻巧的方法,以实现更现实的激光雷达模拟,该方法从测试驱动器数据中学习了真实传感器的行为,并将其转换为虚拟域。核心思想是将仿真施加到图像到图像翻译问题中。我们将基于PIX2PIX的架构训练两个现实世界数据集,即流行的Kitti数据集和提供RGB和LIDAR图像的Audi自动驾驶数据集。我们将该网络应用于合成渲染,并表明它从真实图像到模拟图像充分概括。该策略使我们可以在我们的合成世界中跳过传感器特异性,昂贵且复杂的LIDAR物理模拟,并避免过度简化和通过干净的合成环境较大的域间隙。
translated by 谷歌翻译
标准化流是可易处理的密度模型,可以近似复杂的目标分布,例如物理系统的玻尔兹曼分布。但是,当前的训练流量要么具有寻求模式的行为,要么使用昂贵的MCMC模拟事先生成的目标样本,要么使用具有很高差异的随机损失。为了避免这些问题,我们以退火重要性采样(AIS)增强流量,并最大程度地减少覆盖$ \ alpha $ -divergence的质量,并使用$ \ alpha = 2 $,从而最大程度地减少了重要性的重量差异。我们的方法是流动性Bootstrap(Fab),使用AIS在流动较差的目标区域中生成样品,从而促进了新模式的发现。我们以AIS的最小差异分布来定位,以通过重要性抽样来估计$ \ alpha $ -Divergence。我们还使用优先的缓冲区来存储和重复使用AIS样本。这两个功能显着提高了Fab的性能。我们将FAB应用于复杂的多模式目标,并表明我们可以在以前的方法失败的情况下非常准确地近似它们。据我们所知,我们是第一个仅使用非均衡目标密度学习丙氨酸二肽分子的玻璃体分布,而无需通过分子动力学(MD)模拟生成的样品:FAB与通过最大可能性训练更好的效果,而不是通过最大可能性产生的结果。在MD样品上使用100倍的目标评估。在重新获得重要权重的样品后,我们获得了与地面真相几乎相同的二面角的无偏直方图。
translated by 谷歌翻译
我们如何获得世界模型,这些模型在什么以及我们的行动如何影响它方面都在终止代表外界?我们可以通过与世界互动而获得此类模型,并且我们是否可以说明数学逃亡者与他们与脑海中存在的假设现实的关系?随着机器学习不仅朝着包含观察性的代表性,而且介入介入知识的趋势,我们使用代表学习和小组理论的工具研究了这些问题。在假设我们的执行者对世界上作用的假设,我们提出了学习的方法,不仅要学习感官信息的内部表示,而且还以与世界上的行动和过渡相一致的方式来修改我们的感觉表示的行为。我们使用配备有线性作用在其潜在空间上的组表示的自动编码器,该空间对2步重建进行了训练,例如在组表示上执行合适的同构属性。与现有工作相比,我们的方法对组表示的假设更少,并且代理可以从组中采样的转换。我们从理论上激励我们的方法,并从经验上证明它可以学习群体和环境拓扑的正确表示。我们还将其在轨迹预测中的性能与以前的方法进行比较。
translated by 谷歌翻译