模拟逼真的传感器是自主系统数据生成的挑战,通常涉及精心手工的传感器设计,场景属性和物理建模。为了减轻这一点,我们引入了一条管道,用于对逼真的激光雷达传感器进行数据驱动的模拟。我们提出了一个模型,该模型可以在RGB图像和相应的LIDAR功能(例如Raydrop或每点强度)之间直接从真实数据集中进行映射。我们表明,我们的模型可以学会编码逼真的效果,例如透明表面上的掉落点或反射材料上的高强度回报。当应用于现成的模拟器软件提供的天真播放点云时,我们的模型通过根据场景的外观预测强度和删除点来增强数据,以匹配真实的激光雷达传感器。我们使用我们的技术来学习两个不同的LIDAR传感器的模型,并使用它们相应地改善模拟的LiDAR数据。通过车辆细分的示例任务,我们表明通过我们的技术增强模拟点云可以改善下游任务性能。
translated by 谷歌翻译
最近的工作建模3D开放表面培训深度神经网络以近似无符号距离字段(UDF)并隐含地代表形状。要将此表示转换为显式网格,它们要么使用计算上昂贵的方法来对表面的致密点云采样啮合,或者通过将其膨胀到符号距离字段(SDF)中来扭曲表面。相比之下,我们建议直接将深度UDFS直接以延伸行进立方体的开放表面,通过本地检测表面交叉。我们的方法是幅度的序列,比啮合致密点云,比膨胀开口表面更准确。此外,我们使我们的表面提取可微分,并显示它可以帮助稀疏监控信号。
translated by 谷歌翻译
Many datasets are biased, namely they contain easy-to-learn features that are highly correlated with the target class only in the dataset but not in the true underlying distribution of the data. For this reason, learning unbiased models from biased data has become a very relevant research topic in the last years. In this work, we tackle the problem of learning representations that are robust to biases. We first present a margin-based theoretical framework that allows us to clarify why recent contrastive losses (InfoNCE, SupCon, etc.) can fail when dealing with biased data. Based on that, we derive a novel formulation of the supervised contrastive loss (epsilon-SupInfoNCE), providing more accurate control of the minimal distance between positive and negative samples. Furthermore, thanks to our theoretical framework, we also propose FairKL, a new debiasing regularization loss, that works well even with extremely biased data. We validate the proposed losses on standard vision datasets including CIFAR10, CIFAR100, and ImageNet, and we assess the debiasing capability of FairKL with epsilon-SupInfoNCE, reaching state-of-the-art performance on a number of biased datasets, including real instances of biases in the wild.
translated by 谷歌翻译
在许多情况下,更简单的模型比更复杂的模型更可取,并且该模型复杂性的控制是机器学习中许多方法的目标,例如正则化,高参数调整和体系结构设计。在深度学习中,很难理解复杂性控制的潜在机制,因为许多传统措施并不适合深度神经网络。在这里,我们开发了几何复杂性的概念,该概念是使用离散的dirichlet能量计算的模型函数变异性的量度。使用理论论据和经验结果的结合,我们表明,许多常见的训练启发式方法,例如参数规范正规化,光谱规范正则化,平稳性正则化,隐式梯度正则化,噪声正则化和参数初始化的选择,都可以控制几何学复杂性,并提供一个统一的框架,以表征深度学习模型的行为。
translated by 谷歌翻译
自动分割前庭造型瘤(VS)和来自磁共振成像(MRI)的耳蜗可以促进与治疗计划。无监督的分割方法已显示出令人鼓舞的结果,而无需耗时且费力的手动标记过程。在本文中,我们提出了一种在无监督域的适应设置中进行VS和耳蜗分割的方法。具体而言,我们首先开发了跨站点的跨模式未配对的图像翻译策略,以丰富合成数据的多样性。然后,我们设计了一种基于规则的离线增强技术,以进一步最大程度地减少域间隙。最后,我们采用一个自我训练的自我配置分割框架,以获得最终结果。在Crossmoda 2022验证排行榜上,我们的方法已获得竞争性与耳蜗细分性能,平均骰子得分为0.8178 $ \ pm $ 0.0803和0.8433 $ \ pm $ 0.0293。
translated by 谷歌翻译
在过去的十年中,我们看到了工业数据,计算能力的巨大改善以及机器学习的重大理论进步。这为在大规模非线性监控和控制问题上使用现代机器学习工具提供了机会。本文对过程行业的应用进行了对最新结果的调查。
translated by 谷歌翻译
现有的数据驱动方法用于披上姿势的人体,尽管有效,但无法处理任意拓扑的服装,并且通常不是端到端的。为了解决这些局限性,我们提出了一条端到端可区分管道,该管道用隐式表面表示服装,并学习以铰接式身体模型的形状和姿势参数为条件的皮肤场。为了限制身体的插入和人工制品,我们提出了一种解释意识的训练数据的预处理策略和新颖的训练损失,在覆盖服装的同时惩罚了自身交流。我们证明,我们的方法可以针对最新方法产生更准确的结果和变形。此外,我们表明我们的方法凭借其端到端的可不同性,可以从图像观察中共同恢复身体和服装参数,这是以前的工作无法做到的。
translated by 谷歌翻译
卷积神经网络(CNN)已通过卷积和汇总实现了图像分类的重大进展。特别是,图像池将连接的离散网格转换为具有相同连接性的还原网格,并允许还原功能考虑图像的所有像素。但是,对于图形而不存在满足此类属性的合并。实际上,某些方法基于一个顶点选择步骤,该步骤会导致重要信息丢失。其他方法学习了顶点集的模糊聚类,该聚类几乎诱导了几乎完全减少的图形。我们建议使用名为MivSpool的新合并方法克服这两个问题。该方法基于使用最大独立顶点集(MIV)和将其余顶点分配给幸存者的最大独立顶点集(MIV)的选择的顶点。因此,我们的方法不会丢弃任何顶点信息,也不会人为地增加图的密度。实验结果表明,各种标准数据集上的图形分类的精度有所提高。
translated by 谷歌翻译
在与用户进行交流时,以任务为导向的对话系统必须根据对话历史记录在每个回合时跟踪用户的需求。这个称为对话状态跟踪(DST)的过程至关重要,因为它直接告知下游对话政策。近年来,DST引起了很大的兴趣,文本到文本范式作为受欢迎的方法。在本评论论文中,我们首先介绍任务及其相关的数据集。然后,考虑到最近出版的大量出版物,我们确定了2021 - 2022年研究的重点和研究进展。尽管神经方法已经取得了重大进展,但我们认为对话系统(例如概括性)的某些关键方面仍未得到充实。为了激励未来的研究,我们提出了几种研究途径。
translated by 谷歌翻译
病理系统地诱导形态学变化,从而提供了主要但不足以量化的可观察到诊断来源。该研究基于计算机断层扫描(CT)体积的形态特征(3D形态学)开发了病理状态的预测模型。开发了一个完整的工作流程,以进行网状提取和简化器官表面的工作流程,并与平均曲率和网状能的分布自动提取形态特征自动提取。然后对XGBoost监督分类器进行了训练和测试,以预测病理状态。该框架应用于肺结节恶性肿瘤的预测。在具有恶性肿瘤的NLST数据库的子集中,仅使用3D形态学证实了活检,将肺结节的分类模型分类为恶性与良性AUC的良性0.964。 (1)临床相关特征的其他三组经典特征经过训练和测试,AUC为0.58,(2)111辐射因子学的AUC为0.976,(3)含有结节大小,衰减和衰减和衰减的放射科医生地面真相(GT) Spiculation定性注释的AUC为0.979。我们还测试了Brock模型并获得0.826的AUC。将3D形态学和放射素学特征结合在一起,可以实现最新的结果,而AUC为0.978,其中3D形态学具有一些最高的预测能力。作为对公共独立队列的验证,将模型应用于LIDC数据集,3D形态学的AUC达到0.906,而3D型物体+放射线学则获得了0.958的AUC,在挑战中排名第二。它将曲率分布确定为预测肺结核恶性肿瘤的有效特征,并可以直接应用于任意计算机辅助诊断任务。
translated by 谷歌翻译