脑转移经常发生在转移性癌症的患者中。早期和准确地检测脑转移对于放射治疗的治疗计划和预后至关重要。为了提高深入学习的脑转移检测性能,提出了一种称为体积级灵敏度特异性(VSS)的定制检测损失,该损失是单个转移检测灵敏度和(子)体积水平的特异性。作为敏感性和精度始终在转移水平中始终是折射率,可以通过调节VSS损耗中的重量而无需骰子分数系数进行分段转移来实现高精度或高精度。为了减少被检测为假阳性转移的转移样结构,提出了一种时间的现有量作为神经网络的额外输入。我们提出的VSS损失提高了脑转移检测的敏感性,将灵敏度提高了86.7%至95.5%。或者,它将精度提高了68.8%至97.8%。随着额外的时间现有量,在高灵敏度模型中,约45%的假阳性转移减少,高特异性模型的精度达到99.6%。所有转移的平均骰子系数约为0.81。随着高灵敏度和高特异性模型的集合,平均每位患者的1.5个假阳性转移需要进一步检查,而大多数真正的阳性转移确认。该集合学习能够区分从需要特殊专家审查或进一步跟进的转移候选人的高信心真正的阳性转移,特别适合实际临床实践中专家支持的要求。
translated by 谷歌翻译
强大的深度学习技术的发展为社会和个人带来了一些负面影响。一个这样的问题是假媒体的出现。为了解决这个问题,我们组织了可信赖的媒体挑战(TMC)来探讨人工智能(AI)如何利用如何打击假媒体。我们与挑战一起发布了一个挑战数据集,由4,380张假和2,563个真实视频组成。所有这些视频都伴随着Audios,采用不同的视频和/或音频操作方法来生产不同类型的假媒体。数据集中的视频具有各种持续时间,背景,照明,最小分辨率为360p,并且可能包含模拟传输误差和不良压缩的扰动。我们还开展了用户学习,以展示所作数据集的质量。结果表明,我们的数据集具有有希望的质量,可以在许多情况下欺骗人类参与者。
translated by 谷歌翻译
通过梯度流优化平均平衡误差,研究了功能空间中神经网络的动态。我们认为,在underParameterized制度中,网络了解由与其特征值对应的率的神经切线内核(NTK)确定的整体运算符$ t_ {k ^ \ infty} $的特征功能。例如,对于SPENTE $ S ^ {D-1} $和旋转不变的权重分配的均匀分布式数据,$ t_ {k ^ \ infty} $的特征函数是球形谐波。我们的结果可以理解为描述interparameterized制度中的光谱偏压。证据使用“阻尼偏差”的概念,其中NTK物质对具有由于阻尼因子的发生而具有大特征值的特征的偏差。除了下公共条例的制度之外,阻尼偏差可用于跟踪过度分辨率设置中经验风险的动态,允许我们在文献中延长某些结果。我们得出结论,阻尼偏差在优化平方误差时提供了动态的简单和统一的视角。
translated by 谷歌翻译
我们提出了一种雷达惯性内径测量的方法,其使用连续时间框架来熔断来自多个汽车雷达的熔丝测量和惯性测量单元(IMU)。不利的天气条件对雷达传感器的操作性能不同,与相机和激光器传感器不同,对雷达传感器的操作性能没有显着影响。雷达在这种情况下的鲁棒性和乘客车辆雷达的普遍普遍激励我们来看看雷达用于自我运动估计。连续时间轨迹表示不仅应用于实现异构和异步多传感器融合的框架,还应用于通过能够计算封闭形式的姿势及其衍生物来实现高效优化,并且在任何特定时间沿着弹道。我们将我们的连续时间估计与来自离散时间雷达 - 惯性内径型方法的方法进行比较,并表明我们的连续时间方法优于离散时间方法。据我们所知,这是第一次将连续时间框架应用于雷达惯性内径术。
translated by 谷歌翻译
有效的人类学习取决于广泛的教育材料,与学习者目前对该主题保持一致。虽然互联网彻底改变了人类的学习或教育,但仍存在大量资源可访问性障碍。即,过剩的在线信息可以使其充满努力导航和发现高质量的学习材料。在本文中,我们提出了教育资源发现(ERD)管道,用于为新颖域自动化Web资源发现。管道由三个主要步骤组成:数据收集,功能提取和资源分类。我们从一个已知的源域开始,通过传输学习在两个看不见的目标域上进行资源发现。我们首先从一组种子文档中收集频繁查询并在网上搜索以获取候选资源,例如讲座幻灯片和介绍博客帖子。然后我们介绍一个小说预用信息检索深神经网络模型,查询文件屏蔽语言建模(QD-MLM),以提取这些候选​​资源的深度特征。我们应用基于树的分类器来决定候选人是否是一个积极的学习资源。当在两个类似但新的靶域评估时,管道在评估时实现0.94和0.82的F1分数。最后,我们展示了该管道如何使应用程序有益于应用:调查的领先段落生成。这是据我们所知,这是考虑各种网络资源的研究。我们还释放了39,728个手动标记的Web资源的语料库,以及来自NLP,计算机视觉(CV)和统计信息(统计数据)的659个查询。
translated by 谷歌翻译
TRISTRUCCUCTIONATIOPIC(TRISO)涂层颗粒燃料是强大的核燃料,并确定其可靠性对于先进的核技术的成功至关重要。然而,Triso失效概率很小,相关的计算模型很昂贵。我们使用耦合的主动学习,多尺度建模和子集模拟来估计使用几个1D和2D模型的Triso燃料的故障概率。通过多尺度建模,我们用来自两个低保真(LF)模型的信息融合,取代了昂贵的高保真(HF)模型评估。对于1D TRISO模型,我们考虑了三种多倍性建模策略:仅克里格,Kriging LF预测加克里格校正,深神经网络(DNN)LF预测加克里格校正。虽然这些多尺度建模策略的结果令人满意地比较了从两个LF模型中使用信息融合的策略,但是通常常常称为HF模型。接下来,对于2D Triso模型,我们考虑了两个多倍性建模策略:DNN LF预测加克里格校正(数据驱动)和1D Triso LF预测加克里格校正(基于物理学)。正如所预期的那样,基于物理的策略一直需要对HF模型的最少的呼叫。然而,由于DNN预测是瞬时的,数据驱动的策略具有较低的整体模拟时间,并且1D Triso模型需要不可忽略的模拟时间。
translated by 谷歌翻译
假设发行版是高斯通常促进别侵害的计算。我们考虑一个旨在实现与具有高斯的先前分配和高斯似然函数的强盗环境获得低信息比的代理,但是在应用于伯努利强盗时研究代理的性能。当代理商与Bernoulli强盗互动时,我们建立了贝叶斯遗憾的增加,相对于对高斯匪徒的信息定理束缚。如果高斯的现有分配和似然函数足够弥散,则随着时间的平方根,这种增加的增加,因此每次时间增长都会增加消失。我们的结果正式化了所谓的贝叶斯代理在漫反射错过分布的差异时所谓的贝叶斯代理人仍然有效。
translated by 谷歌翻译
制定了具有机器学习模拟(骆驼)项目的宇宙学和天体物理学,通过数千名宇宙的流体动力模拟和机器学习将宇宙学与天体物理学结合起来。骆驼包含4,233个宇宙学仿真,2,049个n-body和2,184个最先进的流体动力模拟,在参数空间中采样巨大的体积。在本文中,我们介绍了骆驼公共数据发布,描述了骆驼模拟的特性和由它们产生的各种数据产品,包括光环,次麦,银河系和空隙目录,功率谱,Bispectra,Lyman - $ \ Alpha $光谱,概率分布函数,光环径向轮廓和X射线光子列表。我们还释放了超过骆驼 - 山姆的数十亿个星系的目录:与Santa Cruz半分析模型相结合的大量N身体模拟。我们释放包含350多个Terabytes的所有数据,并包含143,922个快照,数百万光环,星系和摘要统计数据。我们提供有关如何访问,下载,读取和处理数据AT \ URL {https://camels.readthedocs.io}的进一步技术详细信息。
translated by 谷歌翻译
在本文中,我们介绍了零射成本模型,使学习成本估计能够推广到看不见的数据库。与最先进的工作负载驱动方法相比,需要在每个新数据库上执行大量训练查询,因此零击成本模型因此允许在没有的盒子中实例化学习成本模型昂贵的培训数据收集。要启用此类零拍成本模型,我们建议基于预先训练的成本模型的新学习范例。作为支持将此类预先训练的成本模型转移到解密数据库的核心贡献,我们介绍了一种新的模型架构和表示技术,用于将查询工作负载编码为对这些模型的输入。正如我们将在我们的评估中展示,零射成本估计可以为广泛的(现实世界)数据库的最先进模型提供更准确的成本估算,而无需在未操作数据库上执行任何查询执行。此外,我们表明零击成本模型可以在几次拍摄模式下使用,从而通过在看不见的数据库上使用少量额外的训练查询来进一步提高其质量。
translated by 谷歌翻译
本文的目的是评估维度减少技术的性能,以建立加密货币之间的联系。我们已经专注于我们对两次交易的加密货币:比特币和以外人的分析。要执行我们的分析,我们将日志返回并添加了一些协变量以构建数据集。我们首先介绍了Pearson相关系数,以便对比特币和以外人之间的联系进行初步评估。然后,我们使用规范相关性分析和主成分分析减少了我们数据集的维度。在用统计技术进行比特币和以外人之间的链接进行分析之后,我们测量了它们在预测Ethereum返回比特币S功能时的性能。
translated by 谷歌翻译