随着全球的太阳能能力继续增长,越来越意识到先进的检验系统正度重视安排智能干预措施并最大限度地减少停机时间。在这项工作中,我们提出了一种新的自动多级模型,以通过使用YOLOV3网络和计算机视觉技术来检测由无人机捕获的空中图像上的面板缺陷。该模型结合了面板和缺陷的检测来改进其精度。主要的Noveltize由其多功能性来处理热量或可见图像,并检测各种缺陷及其对屋顶和地面安装的光伏系统和不同面板类型的缺陷。拟议的模型已在意大利南部的两个大型光伏工厂验证,优秀的AP至0.5超过98%,对于面板检测,卓越的AP@0.4(AP@0.5)大约为88.3%(66.95%)的热点红外热成像和MAP@0.5在可见光谱中近70%,用于检测通过污染和鸟粪诱导,分层,水坑的存在和覆盖屋顶板诱导的面板遮蔽的异常谱。还预测了对污染覆盖的估计。最后讨论了对不同yolov3的输出尺度对检测的影响的分析。
translated by 谷歌翻译
我们展示了深度学习模型,特别是像自然语言的变压器那样的架构,可以在随机生成的数据集上培训,以预测代谢网络的定性和定量特征非常高的准确性。使用标准数学技术,我们创建了可以用于训练我们的模型的大型随机网络的大集(40 00万个元素)。这些训练有素的模型可以在超过99%的情况下预测随机图的网络均衡。它们还可以概括与不同结构的图表,而不是在训练时遇到的图表。最后,他们可以预测一小组已知的生物网络的均衡。我们的方法在实验数据中非常经济,并且仅使用小而浅的深度学习模型,远离机器翻译中常用的大型架构。这种结果为更大利用深入学习模型的方法铺平了与定量系统药理学,系统生物学和合成生物学等重点领域相关的问题。
translated by 谷歌翻译