基础培训数据的质量对于建立具有更广泛的Generalizabilty的表演机器学习模型非常重要。但是,当前机器学习(ML)工具缺乏简化的流程,用于提高数据质量。因此,获取数据质量见解并迭代地修剪以获取最大代表下游使用情况的数据集的错误仍然是Ad-hoc手动过程。我们的工作解决了这种数据工具差距,需要纯粹通过以数据为中心的技术构建改进的ML工作流程。更具体地说,我们介绍了(1)在数据集中找到嘈杂或错误标记的样本的系统框架,(2)识别最具信息丰富的样本,当包含在训练中时,该样本将提供最大的模型性能提升。我们展示了我们在公共场合的框架以及两家财富500强公司的私营企业数据集的效果,并确信这项工作将形成ML团队执行更智能的数据发现和修剪的基础。
translated by 谷歌翻译
通过提供超出人为局限性的环境,机器人是空间探索的关键仪器。跳跃机器人概念是有吸引力的谈判复杂地形的解决方案。然而,在克服的工程挑战中,能够持续运行的跳跃机器人概念,机械故障模式的减少是最基本的。本研究提出开发跳跃机器人,重点是减少机制维护的最小致动。我们介绍了Sarrus式连杆的合成,以限制系统在不使用典型的同步齿轮的情况下对系统进行三种翻译程度。我们将目前的研究界定到垂直固体跳跃,以评估基本主驱动轴的性能。实验室示威者有助于转移理论概念和方法。实验室示威者进行了63%的动能转换效率的跳跃,理论最大为73%。令人满意的运行开辟了朝向太空勘探跳跃机器人平台的发展的设计优化和方向跳跃能力。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
仅使用诸如图像类标签的全局注释,弱监督学习方法允许CNN分类器共同分类图像,并产生与预测类相关的感兴趣区域。然而,在像素水平的任何引导下,这种方法可以产生不准确的区域。已知该问题与组织学图像更具挑战,而不是与天然自然的图像,因为物体不太突出,结构具有更多变化,并且前景和背景区域具有更强的相似之处。因此,用于CNNS的视觉解释的计算机视觉文献中的方法可能无法直接适用。在这项工作中,我们提出了一种基于复合损耗功能的简单而有效的方法,可利用完全消极样本的信息。我们的新损失函数包含两个补充项:第一次利用CNN分类器收集的积极证据,而第二个利用来自CNN分类器的积极证据,而第二个互联网将利用来自训练数据集的完全消极样本。特别是,我们用解码器装备预先训练的分类器,该解码器允许精制感兴趣的区域。利用相同的分类器来收集像素电平的正面和负证据,以培训解码器。这使得能够利用自然地发生在数据中的完全消极样本,而没有任何额外的监督信号,并且仅使用图像类作为监督。与几种相关方法相比,在冒号癌的公共基准GLAS和使用三种不同的骨架的CONELYON16基于乳腺癌的CAMELYON16基准测试,我们展示了我们方法引入的大量改进。我们的结果表明了使用负数和积极证据的好处,即,从分类器获得的效益以及在数据集中自然可用的那个。我们对这两种术语进行了消融研究。我们的代码公开提供。
translated by 谷歌翻译
大多数当前图像标题模型通常从左到右生成标题。这种单向财产使它们只能利用过去的背景但不是未来的背景。尽管最近的基于改进的模型可以通过基于第一阶段的预检索或预先生成的标题在第二阶段生成新的标题来利用过去和未来的上下文,但是这些模型的解码器通常由两个网络组成〜(即第一阶段中的猎犬或标题器和第二阶段的炼油厂),其只能顺序地执行。在本文中,我们引入了一种用于图像标题的紧凑双向变压器模型,其可以在解码器并行执行解码器时隐式地和明确地利用双向上下文。具体地,通过将​​左右(L2R)和向右(R2L)紧密地耦合到单个紧凑型〜(即隐式)和可选地允许两个流的相互作用(即明确)的相互作用(即明确)来实现来实现。最终标题以句子级集合方式从L2R或R2L流中选择。我们对MSCOCO基准进行广泛的消融研究,并找到紧凑的架构,它用作隐式利用双向上下文的正则化,以及句子级集合比显式交互机制扮演更重要的角色。通过无缝地与单词级集合组合,句子级集合的效果进一步放大。我们进一步将传统的单流自我关键培训扩展到此架构下的双流程版本,并与非视语 - 预先预订模型相比,实现新的最先进导致。源代码可用于{\ color {magenta} \ url {https://github.com/yuanezhou/cbtrans}}。
translated by 谷歌翻译
近年来,近年来,加强学习与图形神经网络(GNN)架构相结合,可以学会解决硬组合优化问题:给定原始输入数据和评估者指导过程,这个想法是自动学习策略返回可行和高质量的输出。最近的工作表明了有希望的结果,但后者主要在旅行推销员问题(TSP)和类似的抽象变体上进行评估,例如分割输送车辆路由问题(SDVRP)。在本文中,我们分析了如何以及最近的神经架构如何应用于实际重要性的图表问题。因此,我们将这些架构系统上“将这些架构转移到电力和信道分配问题(PCAP),其具有实际相关性,例如无线网络中的无线电资源分配。我们的实验结果表明现有的架构(I)仍然无法捕获图形结构特征,并且(II)不适合图表上的动作更改图形属性的问题。在一个积极的票据上,我们表明,增强了距离编码问题的结构表示是迈向学习多用途自主求解器的仍然雄心勃勃的目标的有希望的一步。
translated by 谷歌翻译
许多图像处理网络在整个输入图像上应用一组静态卷积核,这是自然图像的次优,因为它们通常由异质视觉模式组成。最近在分类,分割和图像恢复方面的工作已经证明,动态核优于局部图像统计数据的静态内核。然而,这些工作经常采用每像素卷积核,这引入了高存储器和计算成本。为了在没有显着开销的情况下实现空间变化的处理,我们呈现\ TextBF {Malle} Chable \ TextBF {CONV} olution(\ textbf {malleconv}),作为动态卷积的有效变体。 \我们的权重由能够在特定空间位置产生内容相关的输出的有效预测器网络动态地产生。与以前的作品不同,\我们从输入生成一组更小的空间变化内核,这会扩大网络的接收领域,并显着降低计算和内存成本。然后通过具有最小内存开销的高效切片和-Conver操作员将这些内核应用于全分辨率的特征映射。我们进一步使用MalleConv建立了高效的去噪网络,被创建为\ textbf {mallenet}。它实现了高质量的结果,没有非常深的架构,例如,它是8.91 $ \ times $的速度快于最好的去噪算法(Swinir),同时保持类似的性能。我们还表明,添加到标准的基于卷积的骨干的单个\我们可以贡献显着降低计算成本或以相似的成本提高图像质量。项目页面:https://yifanjiang.net/malleconv.html
translated by 谷歌翻译
异构信息网络(HIN)捕获各种实体之间的复杂关系,并已广泛用于提高各种数据挖掘任务的有效性,例如在推荐系统中。许多现有的文欣推荐算法利用手工制作的元路径来提取来自网络的语义信息。这些算法依赖于广泛的域知识,可以选择最佳的元路径集。对于HIN与众多节点和链路类型高度复杂的应用程序,手工制作方法的方法太繁琐,并且容易出错。为了解决这个问题,我们提出了基于加强学习的元路径选择(RMS)框架,以选择有效的元路径,并将它们包含在现有的基于元路径的推荐中。为了识别高质量的元路径,RMS列举了基于加强学习(RL)的策略网络(代理),从而从下游推荐任务的性能获取奖励。我们设计一个基于HIN的推荐模型,HREC,有效地使用元路径信息。我们将HREC与RMS进行了整合并导出了我们的推荐解决方案,RMS-HREC,它自动使用有效的元路径。实验对实时数据集表明,我们的算法通过自动捕获重要元路径,可以显着提高推荐模型的性能。
translated by 谷歌翻译
库存在矿业价值链中是必不可少的,协助最大化的价值和生产。库存矿物质的质量控制是储存经理的主要问题,未能满足一些要求可能导致亏损。最近使用单个回收器和基本假设来调查此问题。本研究扩展了考虑多次回收人员准备短期和长期交付的方法。多次恢复者的参与使得在他们在准备交付时的交互方面使问题变得复杂化和安全距离的再生家。我们还考虑更现实的设置,例如用不同类型的回收器处理不同的矿物质。我们提出了构建解决方案的方法,以逐步符合牲畜轿车中所有收集者的优先约束。我们使用贪婪算法,蚁群优化(ACO)来研究各种问题的实例,并提出了一种确定有效计划的集成本地搜索方法。我们微调并比较算法,并表明ACO与本地搜索相结合,可以产生高效的解决方案。
translated by 谷歌翻译
集中的动物饲养业务(CAFOS)对空气,水和公共卫生构成严重风险,但已被证明挑战规范。美国政府问责办公室注意到基本挑战是缺乏关于咖啡馆的全面的位置信息。我们使用美国农业部的国家农产病程(Naip)1M / Pixel Acial Imagerery来检测美国大陆的家禽咖啡馆。我们培养卷积神经网络(CNN)模型来识别单个家禽谷仓,并将最佳表现模型应用于超过42 TB的图像,以创建家禽咖啡座的第一个国家开源数据集。我们验证了来自加利福尼亚州的10个手标县的家禽咖啡馆设施的模型预测,并证明这种方法具有填补环境监测中差距的显着潜力。
translated by 谷歌翻译