尽管电子健康记录是生物医学研究的丰富数据来源,但这些系统并未在医疗环境中统一地实施,并且由于医疗保健碎片化和孤立的电子健康记录之间缺乏互操作性,可能缺少大量数据。考虑到缺少数据的案例的删除可能会在随后的分析中引起严重的偏见,因此,一些作者更喜欢采用多重插补策略来恢复缺失的信息。不幸的是,尽管几项文献作品已经通过使用现在可以自由研究的任何不同的多个归档算法记录了有希望的结果,但尚无共识,MI算法效果最好。除了选择MI策略之外,归纳算法及其应用程序设置的选择也至关重要且具有挑战性。在本文中,受鲁宾和范布伦的开创性作品的启发,我们提出了一个方法学框架,可以应用于评估和比较多种多个插补技术,旨在选择用于计算临床研究工作中最有效的推断。我们的框架已被应用于验证和扩展较大的队列,这是我们在先前的文献研究中提出的结果,我们在其中评估了关键患者的描述符和Covid-19的影响在2型糖尿病患者中的影响,其数据为2型糖尿病,其数据为2型糖尿病由国家共同队列合作飞地提供。
translated by 谷歌翻译
推荐系统被证明是提取与用户相关的内容帮助用户进行日常活动的宝贵工具(例如,找到相关的访问地点,要消费的内容,要购买的商品)。但是,为了有效,这些系统需要收集和分析大量个人数据(例如,位置检查,电影评分,点击率等),这使用户面临许多隐私威胁。在这种情况下,基于联合学习(FL)的推荐系统似乎是一个有前途的解决方案,可以在计算准确的建议的同时将个人数据保存在用户设备上时,是一个有前途的解决方案。但是,FL,因此基于FL的推荐系统,依靠中央服务器,除了容易受到攻击外,还可以遇到可伸缩性问题。为了解决这个问题,我们提出了基于八卦学习原理的分散推荐系统Pepper。在胡椒中,用户八卦模型更新并不同步。 Pepper的核心位于两个关键组成部分:一个个性化的同行采样协议,该协议保存在每个节点附近,这是与前者具有相似兴趣的节点的一部分,以及一个简单而有效的模型汇总功能,该功能构建了一个模型更适合每个用户。通过在三个实施两个用例的实验实验中进行实验:位置入住建议和电影推荐,我们证明我们的解决方案比其他分散的解决方案快42%收敛于42%与分散的竞争对手相比,长时间性能的命中率和高达21%的速度提高了21%。
translated by 谷歌翻译
对脑外伤(TBI)患者的准确预后很难为治疗,患者管理和长期护理提供信息至关重要。年龄,运动和学生反应性,缺氧和低血压以及计算机断层扫描(CT)的放射学发现等患者特征已被确定为TBI结果预测的重要变量。 CT是临床实践中选择的急性成像方式,因为其获取速度和广泛的可用性。但是,这种方式主要用于定性和半定量评估,例如马歇尔评分系统,该系统容易受到主观性和人为错误。这项工作探讨了使用最先进的,深度学习的TBI病变分割方法从常规获得的医院入院CT扫描中提取的成像生物标志物的预测能力。我们使用病变体积和相应的病变统计作为扩展TBI结果预测模型的输入。我们将我们提出的功能的预测能力与马歇尔分数进行比较,并与经典的TBI生物标志物配对。我们发现,在预测不利的TBI结果时,自动提取的定量CT功能的性能与Marshall分数相似或更好。利用自动地图集对齐,我们还确定额叶外病变是不良预后的重要指标。我们的工作可能有助于更好地理解TBI,并提供有关如何使用自动化神经影像分析来改善TBI后预测的新见解。
translated by 谷歌翻译
在最近的文章中,Guo等人。[ARXIV:2206.11228]报告说,深网中对抗训练的神经表示可能已经像相应的灵长类动物IT神经表示一样强大。尽管我们发现该论文的主要实验有所照明,但我们对论文中介绍的结果的解释和措辞有疑问。
translated by 谷歌翻译
我们研究了从记录的匪徒反馈中进行额外学习的增强合奏模型。为了实现这一目标,我们提出了一种新的增强算法,该算法直接优化了对政策预期奖励的估计。我们分析了该算法,并证明,只要满足“弱”的学习条件,每轮增强的经验风险会随着每一轮增强而降低(可能是指数迅速)。我们进一步展示了基础学习者如何减少标准监督学习问题。实验表明,我们的算法可以胜过仅在观察到的奖励上回归的深层外部学习和方法,从而证明了增强和选择正确的学习目标的好处。
translated by 谷歌翻译
在本文中,我们讨论了通过模仿教授双人操作任务的框架。为此,我们提出了一种从人类示范中学习合规和接触良好的机器人行为的系统和算法。提出的系统结合了入学控制和机器学习的见解,以提取控制政策,这些政策可以(a)从时空和空间中恢复并适应各种干扰,同时(b)有效利用与环境的物理接触。我们使用现实世界中的插入任务证明了方法的有效性,该任务涉及操纵对象和插入钉之间的多个同时接触。我们还研究了为这种双人设置收集培训数据的有效方法。为此,我们进行了人类受试者的研究,并分析用户报告的努力和精神需求。我们的实验表明,尽管很难提供,但在遥控演示中可用的其他力/扭矩信息对于阶段估计和任务成功至关重要。最终,力/扭矩数据大大提高了操纵鲁棒性,从而在多点插入任务中获得了90%的成功率。可以在https://bimanualmanipulation.com/上找到代码和视频
translated by 谷歌翻译
我们探索了深度神经网络的软磁预测的聚类,并引入了一种新型的概率聚类方法,称为k-sbetas。在聚类分布的一般环境中,现有方法着重于探索针对单纯形数据(例如KL Divergence)量身定制的失真度量,作为标准欧几里得距离的替代方法。我们提供了聚类分布的一般观点,该观点强调,基于失真的方法的统计模型可能不够描述。取而代之的是,我们优化了一个可混合变量的目标,该目标测量了每个集群中数据的一致性与引入的SBETA密度函数,其参数受到约束并与二进制分配变量共同估​​算。我们的多功能公式近似于用于建模群集数据的各种参数密度,并使能够控制群集平衡偏置。这会产生高度竞争性的性能,以在各种情况下进行有效无监督的黑盒预测调整,包括一声分类和实时的无监督域适应道路,以进行道路分割。实施可在https://github.com/fchiaroni/clustering_softmax_predictions上获得。
translated by 谷歌翻译
机器学习(ML)研究通常集中在模型上,而最突出的数据集已用于日常的ML任务,而不考虑这些数据集对基本问题的广度,困难和忠诚。忽略数据集的基本重要性已引起了重大问题,该问题涉及现实世界中的数据级联以及数据集驱动标准的模型质量饱和,并阻碍了研究的增长。为了解决此问题,我们提出Dataperf,这是用于评估ML数据集和数据集工作算法的基准软件包。我们打算启用“数据棘轮”,其中培训集将有助于评估相同问题的测试集,反之亦然。这种反馈驱动的策略将产生一个良性的循环,该循环将加速以数据为中心的AI。MLCommons协会将维护Dataperf。
translated by 谷歌翻译
机器学习的应用(ML)日益增加,用于许多独特而具有挑战性的科学应用。但是,这些应用面临的至关重要的挑战是它们需要超长延迟和探索器ML功能。鉴于摩尔定律和丹纳德缩放的放缓,再加上科学仪器的快速进步,导致数据速率不断增长,因此需要在极端边缘的超快速ML。边缘的快速ML对于实时减少和过滤科学数据至关重要,以加速科学实验并实现更深刻的见解。为了加速实时科学边缘ML硬件和软件解决方案,我们需要具有足够规格的受限基准任务,以便通常适用且可访问。这些基准可以指导未来Edge ML硬件的设计,用于能够满足纳秒和微秒级延迟要求的科学应用程序。为此,我们介绍了一组科学的ML基准,涵盖了各种ML和嵌入式系统技术。
translated by 谷歌翻译
我们提出了一种方法,用于寻找任意初始投资组合和市场国家的最佳对冲政策。我们开发了一种新型的参与者评论算法,用于解决一般的规避风险随机控制问题,并使用它同时学习跨多种风险规避水平的对冲策略。我们在随机波动性环境中以数值示例来证明该方法的有效性。
translated by 谷歌翻译