模拟到现实的转移已成为一种流行且非常成功的方法,用于培训各种任务的机器人控制政策。但是,确定在模拟中训练的政策何时准备将其转移到物理世界通常是一个挑战。部署经过很少的模拟数据训练的策略可能会导致物理硬件的不可靠和危险行为。另一方面,模拟中的过度训练会导致策略过度拟合模拟器的视觉外观和动力学。在这项工作中,我们研究了自动确定在模拟中训练的策略何时可以可靠地转移到物理机器人的策略。我们在机器人织物操纵的背景下专门研究了这些思想,因为成功建模织物的动力学和视觉外观的困难,成功的SIM2Real转移尤其具有挑战性。导致织物平滑任务表明我们的切换标准与实际的性能很好地相关。特别是,我们基于信心的切换标准在培训总预算的55-60%之内达到了87.2-93.7%的平均最终面料覆盖率。有关代码和补充材料,请参见https://tinyurl.com/lsc-case。
translated by 谷歌翻译
安全探索对于使用风险敏感环境中的强化学习(RL)至关重要。最近的工作了解衡量违反限制概率的风险措施,然后可以使用安全性来实现安全性。然而,学习这种风险措施需要与环境的重大互动,从而在学习期间违反违规程度过多。此外,这些措施不易转移到新环境。我们将安全探索作为离线Meta RL问题,目的是利用一系列环境中的安全和不安全行为的例子,以快速将学习风险措施与以前看不见的动态的新环境。然后,我们向安全适应(MESA)提出元学习,这是一个荟萃学习安全RL的风险措施的方法。跨5个连续控制域的仿真实验表明,MESA可以从一系列不同的环境中利用脱机数据,以减少未经调整环境中的约束违规,同时保持任务性能。有关代码和补充材料,请参阅https://tinyurl.com/safe-meta-rl。
translated by 谷歌翻译
以前的工作定义了探索性抓握,其中一个机器人迭代地抓住并丢弃一个未知的复杂多面体物体,以发现一组稳定的掌握对象的每个识别的不同稳定的姿势。最近的工作用来了一个多武装强盗模型,每种姿势一小组候选麦克风;但是,对于具有少数成功Grasps的物体,该组可能不包括最强大的掌握。我们展示了学习高效的掌握装置(腿),这是一种算法,可以通过构建大型有希望的掌握的小型活跃的掌握,并使用学习的信心范围来确定何时何时置信,它可以停止探索对象。实验表明,腿可以比不学习活动集的现有算法更有效地识别高质量的掌握。在仿真实验中,我们测量腿部和基线所识别的最佳掌握的成功概率与真正最强大的掌握的最佳差距。经过3000个探索步骤后,腿部优于14个Dex-Net对手的10个中的基线算法和39 egad的25个!对象。然后,我们开发一个自我监督的掌握系统,机器人探讨了人类干预最小的掌握。 3对象的物理实验表明,腿将从基线收敛到高性能的GRASPS比基线更快。有关补充材料和视频,请参阅\ url {https://sites.google.com/view/legs-exp-grasping}。
translated by 谷歌翻译
The ability to monitor the evolution of topics over time is extremely valuable for businesses. Currently, all existing topic tracking methods use lexical information by matching word usage. However, no studies has ever experimented with the use of semantic information for tracking topics. Hence, we explore a novel semantic-based method using word embeddings. Our results show that a semantic-based approach to topic tracking is on par with the lexical approach but makes different mistakes. This suggest that both methods may complement each other.
translated by 谷歌翻译
Many real-world applications of language models (LMs), such as code autocomplete and writing assistance, involve human-LM interaction, but the main LM benchmarks are non-interactive, where a system produces output without human intervention. To evaluate human-LM interaction, we develop a framework, Human-AI Language-based Interaction Evaluation (H-LINE), that expands non-interactive evaluation along three dimensions, capturing (i) the interactive process, not only the final output; (ii) the first-person subjective experience, not just a third-party assessment; and (iii) notions of preference beyond quality. We then design five tasks ranging from goal-oriented to open-ended to capture different forms of interaction. On four state-of-the-art LMs (three variants of OpenAI's GPT-3 and AI21's J1-Jumbo), we find that non-interactive performance does not always result in better human-LM interaction and that first-person and third-party metrics can diverge, suggesting the importance of examining the nuances of human-LM interaction.
translated by 谷歌翻译
Nostradamus, inspired by the French astrologer and reputed seer, is a detailed study exploring relations between environmental factors and changes in the stock market. In this paper, we analyze associative correlation and causation between environmental elements and stock prices based on the US financial market, global climate trends, and daily weather records to demonstrate significant relationships between climate and stock price fluctuation. Our analysis covers short and long-term rises and dips in company stock performances. Lastly, we take four natural disasters as a case study to observe their effect on the emotional state of people and their influence on the stock market.
translated by 谷歌翻译
In this paper, we propose and showcase, for the first time, monocular multi-view layout estimation for warehouse racks and shelves. Unlike typical layout estimation methods, MVRackLay estimates multi-layered layouts, wherein each layer corresponds to the layout of a shelf within a rack. Given a sequence of images of a warehouse scene, a dual-headed Convolutional-LSTM architecture outputs segmented racks, the front and the top view layout of each shelf within a rack. With minimal effort, such an output is transformed into a 3D rendering of all racks, shelves and objects on the shelves, giving an accurate 3D depiction of the entire warehouse scene in terms of racks, shelves and the number of objects on each shelf. MVRackLay generalizes to a diverse set of warehouse scenes with varying number of objects on each shelf, number of shelves and in the presence of other such racks in the background. Further, MVRackLay shows superior performance vis-a-vis its single view counterpart, RackLay, in layout accuracy, quantized in terms of the mean IoU and mAP metrics. We also showcase a multi-view stitching of the 3D layouts resulting in a representation of the warehouse scene with respect to a global reference frame akin to a rendering of the scene from a SLAM pipeline. To the best of our knowledge, this is the first such work to portray a 3D rendering of a warehouse scene in terms of its semantic components - Racks, Shelves and Objects - all from a single monocular camera.
translated by 谷歌翻译
Fine-tuning pre-trained language models (PLMs) achieves impressive performance on a range of downstream tasks, and their sizes have consequently been getting bigger. Since a different copy of the model is required for each task, this paradigm is infeasible for storage-constrained edge devices like mobile phones. In this paper, we propose SPARTAN, a parameter efficient (PE) and computationally fast architecture for edge devices that adds hierarchically organized sparse memory after each Transformer layer. SPARTAN freezes the PLM parameters and fine-tunes only its memory, thus significantly reducing storage costs by re-using the PLM backbone for different tasks. SPARTAN contains two levels of memory, with only a sparse subset of parents being chosen in the first level for each input, and children cells corresponding to those parents being used to compute an output representation. This sparsity combined with other architecture optimizations improves SPARTAN's throughput by over 90% during inference on a Raspberry Pi 4 when compared to PE baselines (adapters) while also outperforming the latter by 0.1 points on the GLUE benchmark. Further, it can be trained 34% faster in a few-shot setting, while performing within 0.9 points of adapters. Qualitative analysis shows that different parent cells in SPARTAN specialize in different topics, thus dividing responsibility efficiently.
translated by 谷歌翻译
We are interested in neurosymbolic systems consisting of a high-level symbolic layer for explainable prediction in terms of human-intelligible concepts; and a low-level neural layer for extracting symbols required to generate the symbolic explanation. Real data is often imperfect meaning that even if the symbolic theory remains unchanged, we may still need to address the problem of mapping raw data to high-level symbols, each time there is a change in the data acquisition environment or equipment. Manual (re-)annotation of the raw data each time this happens is laborious and expensive; and automated labelling methods are often imperfect, especially for complex problems. NEUROLOG proposed the use of a semantic loss function that allows an existing feature-based symbolic model to guide the extraction of feature-values from raw data, using `abduction'. However, the experiments demonstrating the use of semantic loss through abduction appear to rely heavily on a domain-specific pre-processing step that enables a prior delineation of feature locations in the raw data. We examine the use of semantic loss in domains where such pre-processing is not possible, or is not obvious. We show that without any prior information about the features, the NEUROLOG approach can continue to predict accurately even with substantially incorrect feature predictions. We show also that prior information about the features in the form of even imperfect pre-training can help correct this situation. These findings are replicated on the original problem considered by NEUROLOG, without the use of feature-delineation. This suggests that symbolic explanations constructed for data in a domain could be re-used in a related domain, by `feature-adaptation' of pre-trained neural extractors using the semantic loss function constrained by abductive feedback.
translated by 谷歌翻译
Despite the Digital Twin (DT) concept being in the industry for a long time, it remains ambiguous, unable to differentiate itself from information models, general computing, and simulation technologies. Part of this confusion stems from previous studies overlooking the DT's bidirectional nature, that enables the shift of agency (delegating control) from humans to physical elements, something that was not possible with earlier technologies. Thus, we present DTs in a new light by viewing them as a means of imparting intelligence and agency to entities, emphasizing that DTs are not just expert-centric tools but are active systems that extend the capabilities of the entities being twinned. This new perspective on DTs can help reduce confusion and humanize the concept by starting discussions about how intelligent a DT should be, and its roles and responsibilities, as well as setting a long-term direction for DTs.
translated by 谷歌翻译