在本文中,我们推出了一种新的通用依赖树木库,用于亚马逊尼亚的一种濒危语言:秘鲁在秘鲁说的Panoan语言Kakataibo。我们首先讨论实施的协作方法,事实证明,在本科生的计算语言课程的背景下创建树库有效。然后,我们描述了树库的一般细节以及针对拟议的注释实施的特定于语言的注意事项。我们最终对词性标记和句法依赖性解析进行了一些实验。我们专注于单语和转移学习设置,在这里我们研究了另一种Panoan语言资源的Shipibo-Konibo Treebos的影响。
translated by 谷歌翻译
为了使腿部机器人执行敏捷,高度动态和接触率丰富的动作,需要对未经线性动力学的启动不足的复合系统进行全身轨迹计算。在这项工作中,我们介绍了Horizon的动手应用,这是一种针对机器人系统量身定制的新型开源框架,可提供一系列工具来简化动态运动的生成。Horizon在涉及多个机器人平台的广泛行为上进行了测试:我们介绍了其构建块,并描述了使用其直观和直接的API生成三个复杂动作的完整过程。
translated by 谷歌翻译
通用形态(UNIMORPH)项目是一项合作的努力,可为数百种世界语言实例化覆盖范围的标准化形态拐角。该项目包括两个主要的推力:一种无独立的特征架构,用于丰富的形态注释,并以各种语言意识到该模式的各种语言的带注释数据的类型级别资源。本文介绍了过去几年对几个方面的扩张和改进(自McCarthy等人(2020年)以来)。众多语言学家的合作努力增加了67种新语言,其中包括30种濒危语言。我们已经对提取管道进行了一些改进,以解决一些问题,例如缺少性别和马克龙信息。我们还修改了模式,使用了形态学现象所需的层次结构,例如多肢体协议和案例堆叠,同时添加了一些缺失的形态特征,以使模式更具包容性。鉴于上一个UniMorph版本,我们还通过16种语言的词素分割增强了数据库。最后,这个新版本通过通过代表来自metphynet的派生过程的实例丰富数据和注释模式来推动将衍生物形态纳入UniMorph中。
translated by 谷歌翻译
精确的温度测量对于适当的监测和控制工业炉是必不可少的。然而,测量不确定性是这种关键参数的风险。当使用谱带辐射热度技术时,必须考虑某些乐器和环境误差,例如目标表面发射率的不确定性,反射周围物体的辐射或大气吸收和发射,以命名几个。可以使用测量模型来分离测量辐射的不期望的贡献,也称为纠错模型。本文介绍了石油化学炉场景中的温度测量期间预算重要误差和不确定性的方法。还通过基于深度学习的测量校正模型来介绍连续监控系统,以允许域专家实时分析炉的操作。为了验证所提出的系统的功能,提出了一种在石化工厂中的真实应用案例。所提出的解决方案展示了精确的工业炉监测的可行性,从而增加了运行安全性并提高了这种能量密集型系统的效率。
translated by 谷歌翻译
圆角焊接是该行业中最广泛类型的焊接之一,仍然通过接触手动或自动进行。本文旨在描述具有U和L形结构的非接触式圆角焊接机器人的在线编程系统,这响应了第四工业革命的需求。在本文中,作者提出了一种在线机器人编程方法,其消除了传统上在机器人焊接中执行的不必要步骤,使得操作者仅执行三个步骤来完成焊接任务。首先,选择焊接件。然后,进入焊接参数。最后,它将自动生成的程序发送到机器人。该系统最终设法在比比较方法更有效的准备时间中使用所提出的方法进行圆角焊接任务。为此,除了六个轴工业机器人手臂之外,还使用了与其他系统相比使用减少数量的组件,例如结构化光3D相机,两个计算机和集中器。系统的操作复杂性尽可能减少。据作者所知,没有能够执行圆角焊接过程的在线机器人编程系统的科学或商业证据,简化了该过程,使其对操作员完全透明,并在行业4.0范例中陷入框架。它的商业潜力主要在于一种能够适应任何工业圆角焊接工作和任何可以容纳它的支架的柔性系统中的简单和低成本。
translated by 谷歌翻译
自我监督的学习是一种从自然数据中学习有用表示的强大方法。还建议作为在人类中建立视觉表现的一种可能手段,但具体的目标和算法是未知的。目前,大多数自我监督的方法都鼓励系统学习与其他图像相反的相同图像的不同变换的不变表示。然而,这种变换通常是非生物学上的,并且通常由具有随机裁剪和颜色抖动之类的具有相识的感知方案组成。在本文中,我们试图反向工程师这些增强术语更加生物学或感知可符号,同时仍然赋予鼓励鲁棒代表的相同益处。批判性地,我们发现随机裁剪可以被皮质倍率代替,并且图像的扫视样品也可以帮助表示学习。这些转变的可行性表明,生物视觉系统可以实施自我监督的潜在方式。此外,它们打破了许多计算机视觉算法中使用的广泛接受的空间均匀的处理假设,这表明在人类和机器中的空间自适应计算的作用。我们可以在此处找到我们的代码和演示。
translated by 谷歌翻译
光有许多可以通过视觉传感器被动测量的特性。色带分离波长和强度可以说是单眼6D对象姿态估计的最常用的波长。本文探讨了互补偏振信息的互补信息,即光波振荡的方向,可以影响姿态预测的准确性。一种混合模型,利用数据驱动的学习策略共同利用物理代理,并在具有不同量的光度复杂度的物体上进行设计和仔细测试。我们的设计不仅显着提高了与光度 - 最先进的方法相关的姿态精度,而且还使对象姿势估计用于高反射性和透明的物体。
translated by 谷歌翻译
在本文中,我们使用艺术技术的神经语言模型(NLMS)在科学文献中的应用来解决从开放词汇知识库(Openkbs)的推理任务。为此目的,使用常见的Sense KB作为源任务,使用常见的Sense KB训练基于自我关注的NLM。然后在目标KB上测试NLMS,用于开放的词汇推理任务,涉及与最普遍的慢性疾病相关的科学知识(也称为非传染性疾病,NCD)。我们的结果确定了NLM,其始终如一地执行,并且在知识推断中对源代码和目标任务的重要性。此外,在我们通过检查的分析中,我们讨论了模型学到的语义规律和推理能力,同时表现出对我们援助NCD研究的方法的潜在好处的第一洞察力。
translated by 谷歌翻译
由于对社会,经济学和环境的巨大影响,智能电网(SG)的研究和发展引起了学术界,行业和政府的重视。确保SG是一个很大的重大挑战,因为增加了通信网络以协助物理过程控制,将它们暴露于各种网络威胁。除了使用假数据喷射(FDI)技术改变测量值的攻击之外,通信网络上的攻击可能通过拦截消息来破坏电力系统的实时操作,或者通过泛洪与不必要的数据泛换通信信道。解决这些攻击需要跨层方法。在本文中,呈现了一种交叉层策略,称为具有自适应统计(CECD-AS)的交叉层集合RORDET,其集成了故障的SG测量数据的检测以及不一致的网络到达时间和传输延迟,以便更可靠地进行传输延迟准确的异常检测和攻击解释。数值结果表明,与当前方法相比,CECD-AS可以检测多个错误数据喷射,拒绝服务(MITM)攻击中的拒绝服务(MITM)攻击的攻击(MITM)攻击。基于传统的基于物理的状态估计,具有自适应统计策略和基于机器学习分类的检测方案的集合RORDET。
translated by 谷歌翻译
在这项工作中,我们介绍了一种光电尖峰,能够以超速率($ \ \左右100磅/光学尖峰)和低能耗($ <$ PJ /秒码)运行。所提出的系统结合了具有负差分电导的可激发谐振隧道二极管(RTD)元件,耦合到纳米级光源(形成主节点)或光电探测器(形成接收器节点)。我们在数值上学习互连的主接收器RTD节点系统的尖峰动态响应和信息传播功能。使用脉冲阈值和集成的关键功能,我们利用单个节点来对顺序脉冲模式进行分类,并对图像特征(边缘)识别执行卷积功能。我们还展示了光学互连的尖峰神经网络模型,用于处理超过10 Gbps的时空数据,具有高推理精度。最后,我们展示了利用峰值定时依赖性可塑性的片外监督的学习方法,使能RTD的光子尖峰神经网络。这些结果证明了RTD尖峰节点用于低占地面积,低能量,高速光电实现神经形态硬件的潜在和可行性。
translated by 谷歌翻译