We introduce MegaPose, a method to estimate the 6D pose of novel objects, that is, objects unseen during training. At inference time, the method only assumes knowledge of (i) a region of interest displaying the object in the image and (ii) a CAD model of the observed object. The contributions of this work are threefold. First, we present a 6D pose refiner based on a render&compare strategy which can be applied to novel objects. The shape and coordinate system of the novel object are provided as inputs to the network by rendering multiple synthetic views of the object's CAD model. Second, we introduce a novel approach for coarse pose estimation which leverages a network trained to classify whether the pose error between a synthetic rendering and an observed image of the same object can be corrected by the refiner. Third, we introduce a large-scale synthetic dataset of photorealistic images of thousands of objects with diverse visual and shape properties and show that this diversity is crucial to obtain good generalization performance on novel objects. We train our approach on this large synthetic dataset and apply it without retraining to hundreds of novel objects in real images from several pose estimation benchmarks. Our approach achieves state-of-the-art performance on the ModelNet and YCB-Video datasets. An extensive evaluation on the 7 core datasets of the BOP challenge demonstrates that our approach achieves performance competitive with existing approaches that require access to the target objects during training. Code, dataset and trained models are available on the project page: https://megapose6d.github.io/.
translated by 谷歌翻译
在现实世界中,教授多指的灵巧机器人在现实世界中掌握物体,这是一个充满挑战的问题,由于其高维状态和动作空间。我们提出了一个机器人学习系统,该系统可以进行少量的人类示范,并学会掌握在某些被遮挡的观察结果的情况下掌握看不见的物体姿势。我们的系统利用了一个小型运动捕获数据集,并为多指的机器人抓手生成具有多种多样且成功的轨迹的大型数据集。通过添加域随机化,我们表明我们的数据集提供了可以将其转移到策略学习者的强大抓地力轨迹。我们训练一种灵活的抓紧策略,该策略将对象的点云作为输入,并预测连续的动作以从不同初始机器人状态掌握对象。我们在模拟中评估了系统对22多伏的浮动手的有效性,并在现实世界中带有kuka手臂的23多杆Allegro机器人手。从我们的数据集中汲取的政策可以很好地概括在模拟和现实世界中的看不见的对象姿势
translated by 谷歌翻译
任务计划可能需要定义有关机器人需要采取行动的世界的无数领域知识。为了改善这项工作,可以使用大型语言模型(LLM)在任务计划期间为潜在的下一个操作评分,甚至直接生成动作序列,鉴于没有其他域信息的自然语言指令。但是,这样的方法要么需要列举所有可能的下一步评分,要么生成可能包含在当前机器人中给定机器人上不可能操作的自由形式文本。我们提出了一个程序化的LLM提示结构,该结构能够跨越位置环境,机器人功能和任务的计划生成功能。我们的关键见解是提示LLM具有环境中可用操作和对象的类似程序的规格,以及可以执行的示例程序。我们通过消融实验提出了有关迅速结构和生成约束的具体建议,证明了虚拟屋家庭任务中最先进的成功率,并将我们的方法部署在桌面任务的物理机器人组上。网站progprompt.github.io
translated by 谷歌翻译
抓握是通过在一组触点上施加力和扭矩来挑选对象的过程。深度学习方法的最新进展允许在机器人对象抓地力方面快速进步。我们在过去十年中系统地调查了出版物,特别感兴趣使用最终效果姿势的所有6度自由度抓住对象。我们的综述发现了四种用于机器人抓钩的常见方法:基于抽样的方法,直接回归,强化学习和示例方法。此外,我们发现了围绕抓握的两种“支持方法”,这些方法使用深入学习来支持抓握过程,形状近似和负担能力。我们已经将本系统评论(85篇论文)中发现的出版物提炼为十个关键要点,我们认为对未来的机器人抓握和操纵研究至关重要。该调查的在线版本可从https://rhys-newbury.github.io/projects/6dof/获得
translated by 谷歌翻译
Generating grasp poses is a crucial component for any robot object manipulation task. In this work, we formulate the problem of grasp generation as sampling a set of grasps using a variational autoencoder and assess and refine the sampled grasps using a grasp evaluator model. Both Grasp Sampler and Grasp Refinement networks take 3D point clouds observed by a depth camera as input. We evaluate our approach in simulation and real-world robot experiments. Our approach achieves 88% success rate on various commonly used objects with diverse appearances, scales, and weights. Our model is trained purely in simulation and works in the real world without any extra steps. The video of our experiments can be found here.
translated by 谷歌翻译
We present a method for 3D object detection and pose estimation from a single image. In contrast to current techniques that only regress the 3D orientation of an object, our method first regresses relatively stable 3D object properties using a deep convolutional neural network and then combines these estimates with geometric constraints provided by a 2D object bounding box to produce a complete 3D bounding box. The first network output estimates the 3D object orientation using a novel hybrid discrete-continuous loss, which significantly outperforms the L2 loss. The second output regresses the 3D object dimensions, which have relatively little variance compared to alternatives and can often be predicted for many object types. These estimates, combined with the geometric constraints on translation imposed by the 2D bounding box, enable us to recover a stable and accurate 3D object pose. We evaluate our method on the challenging KITTI object detection benchmark [2] both on the official metric of 3D orientation estimation and also on the accuracy of the obtained 3D bounding boxes. Although conceptually simple, our method outperforms more complex and computationally expensive approaches that leverage semantic segmentation, instance level segmentation and flat ground priors [4] and sub-category detection [23][24]. Our discrete-continuous loss also produces state of the art results for 3D viewpoint estimation on the Pascal 3D+ dataset[26].
translated by 谷歌翻译
在过去的二十年中,在遥感(RS)图像中,开发对象检测方法的重大努力。在大多数情况下,遥感图像中的小对象检测的数据集不足。许多研究人员使用了场景分类数据集进行对象检测,这具有其限制;例如,大型对象在对象类别中寡出小对象。因此,他们缺乏多样性;这进一步影响了RS图像中的小对象探测器的检测性能。本文审查了当前数据集和对象检测方法(基于深度学习),用于遥感图像。我们还提出了一种大规模的公开可用的基准遥感超分辨率对象检测(RSSOD)数据集。 RSSOD数据集由1,759个手注释的图像组成,具有22,091个非常高分辨率(VHR)图像,空间分辨率为约0.05米。每个类有五个类别,每个类的标签频率不同。从卫星图像中提取图像贴片,包括真实图像扭曲,例如切向尺度失真和歪斜失真。我们还提出了一种新型多级循环超分辨率生成的对抗网络,具有残余特征聚合(MCGR)和辅助YOLOV5检测器,用于基于基于图像超分辨率的对象检测,并与现有的基于最先进的方法进行比较在图像超分辨率(SR)。与当前最先进的NLSN方法相比,所提出的MCGR为图像SR实现了最新的图像SR性能。 MCGR分别实现了0.758,0.881,0.841和0.983的最佳物体检测映射,分别超过最先进的对象探测器的性能YOLOV5,高效文件,更快的RCNN,SSD和RETINANET。
translated by 谷歌翻译
We consider the problem of federated learning in a one-shot setting in which there are $m$ machines, each observing $n$ sample functions from an unknown distribution on non-convex loss functions. Let $F:[-1,1]^d\rightarrow\mathbb{R}$ be the expected loss function with respect to this unknown distribution. The goal is to find an estimate of the minimizer of $F$. Based on its observations, each machine generates a signal of bounded length $B$ and sends it to a server. The server collects signals of all machines and outputs an estimate of the minimizer of $F$. We show that the expected loss of any algorithm is lower bounded by $\max\big(1/(\sqrt{n}(mB)^{1/d}), 1/\sqrt{mn}\big)$, up to a logarithmic factor. We then prove that this lower bound is order optimal in $m$ and $n$ by presenting a distributed learning algorithm, called Multi-Resolution Estimator for Non-Convex loss function (MRE-NC), whose expected loss matches the lower bound for large $mn$ up to polylogarithmic factors.
translated by 谷歌翻译
图像超分辨率(SR)是重要的图像处理方法之一,可改善计算机视野领域的图像分辨率。在过去的二十年中,在超级分辨率领域取得了重大进展,尤其是通过使用深度学习方法。这项调查是为了在深度学习的角度进行详细的调查,对单像超分辨率的最新进展进行详细的调查,同时还将告知图像超分辨率的初始经典方法。该调查将图像SR方法分类为四个类别,即经典方法,基于学习的方法,无监督学习的方法和特定领域的SR方法。我们还介绍了SR的问题,以提供有关图像质量指标,可用参考数据集和SR挑战的直觉。使用参考数据集评估基于深度学习的方法。一些审查的最先进的图像SR方法包括增强的深SR网络(EDSR),周期循环gan(Cincgan),多尺度残留网络(MSRN),Meta残留密度网络(META-RDN) ,反复反射网络(RBPN),二阶注意网络(SAN),SR反馈网络(SRFBN)和基于小波的残留注意网络(WRAN)。最后,这项调查以研究人员将解决SR的未来方向和趋势和开放问题的未来方向和趋势。
translated by 谷歌翻译