神经网络(NNS)对研究和行业进行了很大的影响。然而,随着NNS的准确性增加,它之后的大小是扩展,所需的计算操作数量和能量消耗。资源消费的增加导致NNS减少的采用率和现实世界部署不切实际。因此,需要压缩NNS以使它们可用于更广泛的受众,同时降低其运行时成本。在这项工作中,我们从因果推理的角度来处理这一挑战,我们提出了一个评分机制,以促进NNS的结构灌注。该方法基于在最大熵扰动下测量互信息,顺序地通过NN传播。我们展示了两种数据集和各种NNS尺寸的方法的表现,我们表明我们的方法在挑战条件下实现了竞争性能。
translated by 谷歌翻译
计算机辅助诊断通常需要分析放射学扫描内的感兴趣区域(ROI),并且ROI可以是器官或子机构。虽然深入学习算法具有优于其他方法的能力,但它们依赖于大量注释数据的可用性。通过解决这一限制的需要,这里提出了一种基于监督和半监督学习的多个器官的定位和检测的方法。它借鉴了作者在CT图像中定位胸椎和腰椎区域的工作者。该方法生成六个感兴趣的器官的边界框,然后将其融合到单个边界框。使用受监督和半监督学习(SSL)在CT图像中的脾脏,左和右肾定位的实验结果证明了与其他状态相比,以更小的数据集和更少的注释来解决数据限制的能力。最新方法。使用三种不同的标记和未标记的数据(即30:70,35:65,40:60)评估SSL性能,分别为腰椎,脾脏左和右肾的每种。结果表明,SSL提供了可行的替代方案,特别是在医学成像中,难以获得注释数据。
translated by 谷歌翻译