清洁和不同标记的数据的可用性是培训复杂任务(例如视觉问答(VQA))的培训模型的主要障碍。大型视觉和语言模型的广泛工作表明,自我监督的学习对预处理多模式相互作用有效。在此技术报告中,我们专注于视觉表示。我们审查和评估自我监督的方法,以利用未标记的图像并预处理模型,然后我们对其进行了自定义VQA任务,该任务允许进行控制的评估和诊断。我们将基于能量的模型(EBM)与对比度学习(CL)进行比较。尽管EBM越来越受欢迎,但他们缺乏对下游任务的评估。我们发现,EBM和CL都可以从未标记的图像中学习表示形式,这些图像能够在很少的注释数据上训练VQA模型。在类似于CLEVR的简单设置中,我们发现CL表示还可以改善系统的概括,甚至匹配来自较大,监督,预测模型的表示的性能。但是,我们发现EBM由于不稳定性和结果差异很高而难以训练。尽管EBMS被证明对OOD检测有用,但基于监督的基于能量的训练和不确定性校准的其他结果在很大程度上是负面的。总体而言,CL当前似乎比EBM的选项更为可取。
translated by 谷歌翻译
从稀疏的原始数据中生成密集的点云使下游3D理解任务,但现有模型仅限于固定的上采样率或短范围的整数值。在本文中,我们提出了APU-SMOG,这是一种基于变压器的模型,用于任意点云上采样(APU)。首先将稀疏输入映射到高斯(烟雾)分布的球形混合物,从中可以采样任意数量的点。然后,将这些样品作为查询馈送到变压器解码器,将它们映射回目标表面。广泛的定性和定量评估表明,APU-SMOG的表现优于最先进的固定比例方法,同时使用任何缩放因子(包括非直觉值)有效地启用了以单个训练有素的模型来提高采样。该代码将可用。
translated by 谷歌翻译
由于没有撤退迹象的车辆的不断增加的电气化,部署在汽车应用中的电子系统受到比以往任何时候都更严格的电磁免疫依从性约束,以确保附近电子系统的接近性不会影响其运行。模拟摄像机链接的EMI合规性测试需要监视和评估视频质量以验证这种合规性,到目前为止,这是一项手动任务。由于人类解释的性质,这是不一致的。在这里,我们建议使用分析的深度学习模型和从EMI合规检验得出的评级视频内容的解决方案。这些模型是使用完全由实际测试图像数据构建的数据集训练的,以确保最大化所得模型的准确性。从标准Alexnet开始,我们提出了四个模型来对EMI噪声水平进行分类
translated by 谷歌翻译
尽管软机器人比传统机器人表现出与环境更安全的相互作用,但软机制和执行器仍然具有巨大的损害或降解潜力,尤其是在未建模的接触期间。本文在控制软机器人期间介绍了用于安全软执行器操作的反馈策略。为此,监督控制器监视执行器状态并动态饱和输入,以避免可能导致物理损害的条件。我们证明,在某些条件下,监督控制器稳定且可靠地安全。然后,我们使用带有嵌入式形状的内存合金(SMA)执行器和传感的软热机器人肢体和感应的软机器人肢体完全演示了监督控制器的板载操作。使用主管进行的测试验证其理论特性,并显示机器人肢体在自由空间中的姿势的稳定。最后,实验表明,我们的方法可以防止在接触过程中(包括环境限制和人接触)或命令不可行的动作时过热。该监督控制器及其完全在板载感应中执行的能力,有可能使软机器人执行器足够可靠地用于实际使用。
translated by 谷歌翻译
我们考虑有限混合物(MFM)和Dirichlet工艺混合物(DPM)模型的贝叶斯混合物。最近的渐近理论已经确定,DPM高估了大型样本的聚类数量,并且两类模型的估计量对于不指定的群集的数量不一致,但是对有限样本分析的含义尚不清楚。拟合这些模型后的最终报告的估计通常是使用MCMC摘要技术获得的单个代表性聚类,但是尚不清楚这样的摘要估计簇的数量。在这里,我们通过模拟和对基因表达数据的应用进行了研究,发现(i)DPM甚至在有限样本中高估了簇数的数量,但仅在有限的程度上可以使用适当的摘要来纠正,并且(ii)(ii) )错误指定会导致对DPM和MFM中集群数量的高估,但是结果通常仍然可以解释。我们提供了有关MCMC摘要的建议,并建议尽管MFM的渐近性能更具吸引力,这提供了强大的动力来偏爱它们,但使用MFMS和DPMS获得的结果通常在实践中非常相似。
translated by 谷歌翻译
生成对抗网络(GAN)在许多应用领域中广泛采用,例如数据预处理,图像编辑和创造力支持。但是,GAN的“黑匣子”性质可防止非专家用户控制模型生成的数据,并产生大量的先前工作,该工作集中在算法驱动的方法上,以提取编辑说明以控制GAN。补充,我们提出了一个Ganzilla:用户驱动的工具,该工具使用户能够使用经典的散点/收集技术来迭代地发现指示,以实现其编辑目标。在与12名参与者的一项研究中,Ganzilla用户能够发现(i)编辑图像匹配提供的示例(封闭任务)的说明,并且(ii)遇到了一个高级目标,例如使脸更加快乐,而同时又实现了。显示个人之间的多样性(开放式任务)。
translated by 谷歌翻译
Datathon是一项涉及应用于特定问题的数据科学的时间限制的竞争。在过去的十年中,DATATHON已被证明是领域和专业知识之间的宝贵桥梁。生物医学数据分析是一个具有挑战性的领域,需要工程师,生物学家和医生之间的合作,以更好地了解患者生理学以及指导诊断,预后和治疗干预措施以改善护理实践的指导决策过程。在这里,我们反思了我们在2022年3月底在MIT关键数据组,Rambam Health Care Campus(Rambam)和Haifa技术以色列技术研究所(Technion Institute of Haifa)在以色列组织的活动的结果。要求参与者完成有关他们的技能和兴趣的调查,这使我们能够确定机器学习培训对医疗问题应用的最新需求。这项工作描述了以色列背景下医学数据科学的机会和局限性。
translated by 谷歌翻译
多类神经网络是现代无监督的领域适应性中的常见工具,但是在适应性文献中缺乏针对其非均匀样品复杂性的适当理论描述。为了填补这一空白,我们为多类学习者提出了第一个Pac-Bayesian适应范围。我们还提出了我们考虑的多类分布差异的第一个近似技术,从而促进了界限的实际使用。对于依赖Gibbs预测因子的分歧,我们提出了其他PAC-湾适应界限,以消除对蒙特卡洛效率低下的需求。从经验上讲,我们测试了我们提出的近似技术的功效以及一些新型的设计概念,我们在范围中包括。最后,我们应用界限来分析使用神经网络的常见适应算法。
translated by 谷歌翻译
将机器学习算法转换为临床应用需要解决与解释性有关的挑战,例如考虑混杂变量(或元数据)的影响。混杂变量会影响输入训练数据和目标输出之间的关系。当我们在此类数据上训练模型时,混杂的变量会偏向于学习功能的分布。最近有前途的解决方案元数据归一化(MDN)估计了基于不可训练的封闭形式解决方案的元数据与每个特征之间的线性关系。但是,该估计受到迷你批量的样本量的限制,因此可能导致该方法在训练过程中不稳定。在本文中,我们通过应用罚款方法(称为PDMN)扩展了MDN方法。我们将问题投入到双层嵌套的优化问题中。然后,我们使用惩罚方法近似此优化问题,以便MDN层中的线性参数可以训练并在所有样本上学习。这使PMDN可以插入任何架构,甚至可以运行批处理级操作,例如变形金刚和经常性模型。我们在合成实验中使用PMDN和MDN的混杂因素和更大的独立性表现出了更大的独立性,并且在合成实验中和多标签的多站点的磁共振图像数据集(MRIS)。
translated by 谷歌翻译
深度学习在学习高维数据的低维表示方面取得了巨大的成功。如果在感兴趣的数据中没有隐藏的低维结构,那么这一成功将是不可能的。这种存在是由歧管假设提出的,该假设指出数据在于固有维度低的未知流形。在本文中,我们认为该假设无法正确捕获数据中通常存在的低维结构。假设数据在于单个流形意味着整个数据空间的内在维度相同,并且不允许该空间的子区域具有不同数量的变异因素。为了解决这一缺陷,我们提出了多种假设的结合,该假设适应了非恒定固有维度的存在。我们从经验上验证了在常用图像数据集上的这一假设,发现确实应该允许内在维度变化。我们还表明,具有较高内在维度的类更难分类,以及如何使用这种见解来提高分类精度。然后,我们将注意力转移到该假设的影响下,在深层生成模型(DGM)的背景下。当前的大多数DGM都难以建模具有几个连接组件和/或不同固有维度的数据集建模。为了解决这些缺点,我们提出了群集的DGM,首先将数据聚集,然后在每个群集上训练DGM。我们表明,聚类的DGM可以模拟具有不同固有维度的多个连接组件,并在没有增加计算要求的情况下经验优于其非簇的非群体。
translated by 谷歌翻译