在本文中,我们提出了一种通过无序的固定长度位串来表示指纹图像的方法,该方法提供了改进的精度性能,更快的匹配时间和可压缩性。首先,我们设计了一个新的基于minutia的局部结构,该结构由像素空间中的2D椭圆高斯函数的混合建模。通过将局部结构与与其相关联的细节数进行归一化,将每个局部结构映射到欧几里德空间。这个简单但至关重要的关键点可以实现两个局部结构的快速相异性计算,其中欧氏距离无失真。还引入了基于细节的局部结构的基于纹理的互补局部结构,其中两者都可以通过主成分分析进行压缩并且在欧几里德空间中容易融合。然后通过K均值聚类算法将融合的局部结构转换为K位有序串。仅使用欧几里德距离的这种计算链对于快速和有区别的位串转换是至关重要的。通过手指特定的比特训练算法可以进一步提高准确度,其中利用两个标准来选择有用的比特位置以进行匹配。在指纹验证竞赛(FVC)数据库上进行实验,以与现有技术进行比较,以显示所提出的方法的优越性。
translated by 谷歌翻译
对于前列腺癌患者,Gleason评分是最重要的预后因素之一,可能决定独立于分期的治疗。然而,Gleason评分基于肿瘤形态的主观显微镜检查并且具有较差的再现性。在这里,我们提出了一个深度学习系统(DLS),用于Gleason评分前列腺切除术的全幻灯片图像。我们的系统是使用来自1,226张幻灯片的1.12亿个病理学家注释的图像片段开发的,并在331个幻灯片的独立验证数据集上进行评估,其中参考标准由泌尿生殖专家病理学家建立。在验证数据集中,29名一般病理学家的平均准确度为0.61。 DLS的诊断准确率显着提高0.70(p = 0.002),并且与临床随访数据的相关性趋向于更好的患者风险分层。我们的方法可以提高格里森评分的准确性和随后的治疗决策,特别是在专业知识不可用的情况下。 DLS还超越了当前的格里森系统,以更精细地表征和定量肿瘤形态,为格里森系统本身的细化提供了机会。
translated by 谷歌翻译
胶质瘤是最常见的原发性脑恶性肿瘤,具有不同程度的侵袭性,可变预后和各种异质性组织亚区域,即肿瘤周围水肿/侵入组织,坏死核心,活性和非增强核心。这种内在的异质性也被用于它们的放射性表型,因为它们的子区域通过在多参数磁共振成像(mpMRI)扫描中传播的不同强度分布来描绘,反映了不同的生物学特性。它们的异质形状,范围和位置是其中的一部分。使这些肿瘤难以切除的因素,在某些情况下无法手术。切除肿瘤的数量也是纵向扫描中考虑的一个因素,用于评估表观肿瘤以进行潜在的进展诊断。此外,有越来越多的证据表明,各种肿瘤亚区域的准确分割可以为定量图像分析提供预测患者整体的基础。生存。该研究评估了在国际脑肿瘤分割(BraTS)挑战的最后七个实例(即2012-2018)期间用于mpMRI扫描中的脑肿瘤图像分析的最先进的机器学习(ML)方法。具体而言,我们专注于i)评估术前mpMRI扫描中各种神经胶质瘤亚区的分割,ii)通过肿瘤亚区的纵向生长评估潜在的肿瘤进展,超出RECIST标准的使用,以及iii)预测整体术前mpMRI扫描对经历完全切除的患者的生存率。最后,我们研究了为每个任务确定最佳ML算法的挑战,考虑到除了在每个挑战实例上多样化之外,多机构mpMRI BraTS数据集也是一个不断发展/不断发展的数据集。
translated by 谷歌翻译
Stein's method for measuring convergence to a continuous target distribution relies on an operator characterizing the target and Stein factor bounds on the solutions of an associated differential equation. While such operators and bounds are readily available for a diversity of univariate targets, few multivariate targets have been analyzed. We introduce a new class of characterizing operators based on Itô diffu-sions and develop explicit multivariate Stein factor bounds for any target with a fast-coupling Itô diffusion. As example applications, we develop computable and convergence-determining diffusion Stein discrepancies for log-concave, heavy-tailed, and multimodal targets and use these quality measures to select the hyperparameters of biased Markov chain Monte Carlo (MCMC) samplers, compare random and deterministic quadrature rules, and quantify bias-variance tradeoffs in approximate MCMC. Our results establish a near-linear relationship between diffusion Stein discrepancies and Wasserstein distances, improving upon past work even for strongly log-concave targets. The exposed relationship between Stein factors and Markov process coupling may be of independent interest.
translated by 谷歌翻译
尽管在眼周识别方面取得了进步,但野外的数据和眼周识别仍然是一个挑战。在本文中,我们通过一对共享参数(双流)卷积神经网络提出了一种多层融合方法,其中每个网络接受RGB数据和一种新颖的基于颜色的纹理描述符,即OrthogonalCombination-Local Binary Coded Pattern(OC-LBCP) )用于野外的眼周识别。具体地,在双流网络中引入两个不同的后期融合层以聚合RGB数据和OC-LBCP。因此,网络有利于后期融合层的这一新特征,以获得准确性。我们还介绍并共享一个新的野外眼周数据集,即用于基准测试的Ethnic-ocular数据集。建议的网络也在两个公开可用的数据集上进行了评估,即CASIA-irisdistance和UBIPr。建议的网络优于这些数据集上的几个竞争方法。
translated by 谷歌翻译
本报告概述了利用大数据革命和大规模计算解决多信使天体物理学中的重大计算挑战的最新工作,特别强调实时发现活动。该文件承认了多信使天体物理学的跨学科性质,由物理学家,天文学,计算机科学,数据科学,软件和网络基础设施社区的成员编写,他们参加了NSF-,DOE-和NVIDIA资助的“多信使天体物理学的深度学习”。 :实时发现规模“研讨会,于2018年10月17日至19日在国家超级计算应用中心举办。本报告的重点包括一致同意这对于加速新型信号处理算法的开发和部署至关重要。利用人工智能(AI)和高性能计算之间的协同作用,最大限度地发挥Multi-Messenger天体物理学的潜在科学发现。我们讨论了实现这一努力的关键方面,即(i)为多信使天体物理学设计和利用可扩展和计算效率高的AI算法;(ii)数字模拟天体物理资源的网络基础设施要求,以及处理和解释多信使天体物理学数据; (iii)管理引力波探测和触发以实现电磁和天体粒子跟踪; (iv)利用未来发展的机器和深度学习以及网络基础设施资源的愿景与大数据时代的发现规模相结合; (v)需要建立一个社区,将领域专家与数据科学家一起进行平等,以最大限度地加速发现多信天体物理学的新兴领域。
translated by 谷歌翻译
在参数空间中探索的黑盒优化器经常被证明可以表现出更加复杂的动作空间探索方法,这些方法专门针对强化学习问题而开发。我们仔细研究这些黑盒方法,以确定它们比动作空间探索方法和它们优越的方法更糟糕的情况。通过简单的理论分析,证明了参数空间探索的复杂性取决于参数空间的维数,而动作空间探索的复杂性则取决于动作空间的维数和地平线长度。通过比较几个模型问题的简单探索方法,包括连续控制中的语境强盗,线性回归和强化学习,也可以凭经验证明这一点。
translated by 谷歌翻译
卷积神经网络中的大多数研究都集中在增加网络深度以提高准确性,导致大量参数将受过训练的网络限制在具有内存和处理约束的平台上。我们建议修改Very DeepConvolutional神经网络(VDCNN)模型的结构,以适应移动平台约束并保持性能。在本文中,我们评估了TemporalDepthwise可分离卷积和全局平均池在网络参数,存储大小和延迟方面的影响。压缩模型(SVDCNN)的尺寸在10倍到20倍之间,具体取决于网络深度,最大尺寸为6MB。关于准确性,与基线模型相比,网络经历0.4%至1.3%的损失并获得较低的延迟。
translated by 谷歌翻译
已经证明,学习辅助任务可以改善主要任务的概括。然而,这是以手动标记附加任务为代价的,这些任务可能对主要任务有用,也可能没有用。我们提出了一种新方法,可以自动学习辅助任务的标签,这样就可以改进任何监督学习任务,而无需访问其他数据。该方法是训练两个神经网络:用于预测辅助标签的标签生成网络,以及用于训练辅助任务的主要任务的多任务网络。标签生成网络的损失包含了多任务网络的性能,因此两个网络之间的这种交互可以被视为元学习的一种形式。我们表明,我们提出的方法Meta AuXiliary Learning(MAXL)在7个图像数据集上的表现优于单一任务,而不需要额外的辅助标签。我们还展示了MAXLout执行其他几个基线来生成辅助标签,并且与人工定义的辅助标签相比,它们具有竞争力。我们方法的这种监督性质导致了一种朝着自动化概括的有希望的新方向。源代码可从\ url {https://github.com/lorenmt/maxl}获得。
translated by 谷歌翻译
目的:评估基于深度学习的高分辨率合成CT生成的可行性,从下臂的MRI扫描进行矫形应用。方法:训练条件生成性对抗网络从多回波MR图像合成CT图像。获得了9个离体下臂的MRI和CT扫描训练集,并将CT图像记录在MRI图像上。应用三重交叉验证以生成整个数据集的独立结果。合成CT图像用平均绝对误差度量和骰子相似度和皮质骨分割的表面距离进行定量评估。结果:总体组织体积的平均绝对误差为63.5HU,皮质骨的平均绝对误差为144.2HU。皮质骨分割的平均Dice相似性为0.86。骨与实验CT之间的平均表面与表面之间的距离为0.48mm。定性地,合成CT图像与实际CT扫描相对应,并且在骨小梁中部分维持高分辨率结构。合成CT图像上的骨分割显示肌腱有一些假阳性,但骨的一般形状被精确重建。结论:本研究表明,可以从下臂的MRI扫描中生成高质量的合成CT。骨骼分割的良好对应性表明,合成CT可以与依赖于这种分割的真实CT应用竞争,例如规划骨科手术和3D打印。
translated by 谷歌翻译