尽管在眼周识别方面取得了进步,但野外的数据和眼周识别仍然是一个挑战。在本文中,我们通过一对共享参数(双流)卷积神经网络提出了一种多层融合方法,其中每个网络接受RGB数据和一种新颖的基于颜色的纹理描述符,即OrthogonalCombination-Local Binary Coded Pattern(OC-LBCP) )用于野外的眼周识别。具体地,在双流网络中引入两个不同的后期融合层以聚合RGB数据和OC-LBCP。因此,网络有利于后期融合层的这一新特征,以获得准确性。我们还介绍并共享一个新的野外眼周数据集,即用于基准测试的Ethnic-ocular数据集。建议的网络也在两个公开可用的数据集上进行了评估,即CASIA-irisdistance和UBIPr。建议的网络优于这些数据集上的几个竞争方法。
translated by 谷歌翻译