我们通过实验验证一个实时机器学习框架,能够控制拉曼放大器的泵功率值以在二维(2D)中塑造信号功率演变:频率和光纤距离。在我们的设置中,优化了四个一阶反向传输泵的功率值,以实现所需的2D功率配置文件。泵功率优化框架包括一个卷积神经网络(CNN),然后是差分进化(DE)技术,在线应用于放大器设置,以自动实现目标2D功率配置文件。可实现的2D配置文件的结果表明,该框架能够确保获得的最大绝对误差(MAE)(<0.5 dB)与获得的目标2D配置文件之间。此外,该框架在多目标设计方案中进行了测试,该方案的目标是在跨度结束时达到固定增益水平的2D配置文件,共同在整个光纤长度上进行最小的光谱游览。在这种情况下,实验结果断言,对于目标扁平增益水平的2D轮廓,当设置在泵功率值中不受物理限制时,DE获得的最大增益偏差小于1 dB。模拟结果还证明,有足够的泵功率可用,可以实现更高的目标增益水平的更好的增益偏差(小于0.6 dB)。
translated by 谷歌翻译
我们为对抗性多机器人群众跨任务中的决策制定开发了一个有弹性的二进制假设测试框架。该框架利用机器人之间的随机信任观察,以在集中式融合中心(FC)中得出可进行的弹性决策,即使I)在网络中存在恶意机器人,其数量可能大于合法机器人的数量,并且II )FC使用所有机器人的一次性噪声测量。我们得出两种算法来实现这一目标。第一个是两个阶段方法(2SA),该方法基于收到的信任观察估算机器人的合法性,并证明在最严重的恶意攻击中可最大程度地减少检测错误的可能性。在这里,恶意机器人的比例是已知但任意的。对于不明的恶意机器人,我们开发了对抗性的广义似然比测试(A-GLRT),该测试(A-GLRT)都使用报告的机器人测量和信任观察来估计机器人的可信赖性,其报告策略以及同时的正确假设。我们利用特殊的问题结构表明,尽管有几个未知的问题参数,但这种方法仍然可以计算处理。我们在硬件实验中部署了这两种算法,其中一组机器人会在模拟道路网络上进行交通状况的人群,但仍会受到SYBIL攻击的方式。我们从实际通信信号中提取每个机器人的信任观察结果,这些信号提供有关发件人独特性的统计信息。我们表明,即使恶意机器人在大多数情况下,FC也可以将检测误差的可能性降低到2SA和A-GLRT的30.5%和29%。
translated by 谷歌翻译
在医学中,精心策划的图像数据集经常采用离散标签来描述所谓的健康状况与病理状况的连续光谱,例如阿尔茨海默氏病连续体或图像在诊断中起关键点的其他领域。我们提出了一个基于条件变异自动编码器的图像分层的体系结构。我们的框架VAESIM利用连续的潜在空间来表示疾病的连续体并在训练过程中找到簇,然后可以将其用于图像/患者分层。该方法的核心学习一组原型向量,每个向量与群集关联。首先,我们将每个数据样本的软分配给群集。然后,我们根据样品嵌入和簇的原型向量之间的相似性度量重建样品。为了更新原型嵌入,我们使用批处理大小中实际原型和样品之间最相似表示的指数移动平均值。我们在MNIST手写数字数据集和名为Pneumoniamnist的医疗基准数据集上测试了我们的方法。我们证明,我们的方法在两个数据集中针对标准VAE的分类任务(性能提高了15%)的KNN准确性优于基准,并且还以完全监督的方式培训的分类模型同等。我们还展示了我们的模型如何优于无监督分层的当前,端到端模型。
translated by 谷歌翻译
从教育和研究的角度来看,关于硬件的实验是机器人技术和控制的关键方面。在过去的十年中,已经介绍了许多用于车轮机器人的开源硬件和软件框架,主要采用独轮车和类似汽车的机器人的形式,目的是使更广泛的受众访问机器人并支持控制系统开发。独轮车通常很小且便宜,因此有助于在较大的机队中进行实验,但它们不适合高速运动。类似汽车的机器人更敏捷,但通常更大且更昂贵,因此需要更多的空间和金钱资源。为了弥合这一差距,我们介绍了Chronos,这是一种具有定制开源电子设备的新型汽车的1/28比例机器人,以及CRS是用于控制和机器人技术的开源软件框架。 CRS软件框架包括实施各种最新的算法,以进行控制,估计和多机构协调。通过这项工作,我们旨在更轻松地使用硬件,并减少启动新的教育和研究项目所需的工程时间。
translated by 谷歌翻译
与临床上建立的疾病类别相比,缺乏大型标记的医学成像数据集以及个体间的显着可变性,在精确医学范式中利用医学成像信息方面面临重大挑战个体预测和/或将患者分为较细粒的群体,这些群体可能遵循更多均匀的轨迹,从而赋予临床试验能力。为了有效地探索以无监督的方式探索医学图像中有效的自由度可变性,在这项工作中,我们提出了一个无监督的自动编码器框架,并增加了对比度损失,以鼓励潜在空间中的高可分离性。该模型在(医学)基准数据集上进行了验证。由于群集标签是根据集群分配分配给每个示例的,因此我们将性能与监督的转移学习基线进行比较。我们的方法达到了与监督体系结构相似的性能,表明潜在空间中的分离再现了专家医学观察者分配的标签。所提出的方法可能对患者分层有益,探索较大类或病理连续性的新细分,或者由于其在变化环境中的采样能力,因此医学图像处理中的数据增强。
translated by 谷歌翻译
我们考虑根据视觉检测自动移动机器人异常的任务。我们对相关类型的视觉异常进行分类,并讨论如何通过无监督的深度学习方法检测到它们。我们提出了一个专门为此任务构建的新型数据集,并在该任务上测试了最先进的方法。我们终于在实际情况下讨论部署。
translated by 谷歌翻译
DeepMind的游戏理论与多代理团队研究多学科学习的几个方面,从计算近似值到游戏理论中的基本概念,再到在富裕的空间环境中模拟社会困境,并在困难的团队协调任务中培训3-D类人动物。我们小组的一个签名目的是使用DeepMind在DeepMind中提供的资源和专业知识,以深入强化学习来探索复杂环境中的多代理系统,并使用这些基准来提高我们的理解。在这里,我们总结了我们团队的最新工作,并提出了一种分类法,我们认为这重点介绍了多代理研究中许多重要的开放挑战。
translated by 谷歌翻译
神经场通过将坐标输入映射到采样值来模型信号。从视觉,图形到生物学和天文学的许多领域,它们正成为越来越重要的主链体系结构。在本文中,我们探讨了这些网络中常见的调理机制之间的差异,这是将神经场从信号的记忆转移到概括的基本要素,其中共同建模了位于歧管上的一组信号。特别是,我们对这些机制的缩放行为感兴趣,以对日益高维的调理变量感兴趣。正如我们在实验中显示的那样,高维条件是建模复杂数据分布的关键,因此,确定哪种体系结构在处理此类问题时最能实现哪种选择。为此,我们运行了使用串联,超网络和基于注意力的调理策略对2D,3D和4D信号进行建模的实验,这是文献中尚未进行的必要但费力的努力。我们发现,基于注意力的条件在各种环境中的其他方法都优于其他方法。
translated by 谷歌翻译
当人类与机器人互动时,不可避免地会影响。考虑一辆在人类附近行驶的自动驾驶汽车:自动驾驶汽车的速度和转向将影响人类驾驶方式。先前的作品开发了框架,使机器人能够影响人类对所需行为的影响。但是,尽管这些方法在短期(即前几个人类机器人相互作用)中有效,但我们在这里探索了长期影响(即同一人与机器人之间的重复相互作用)。我们的主要见解是,人类是动态的:人们适应机器人,一旦人类学会预见机器人的行为,现在影响力的行为可能会失败。有了这种见解,我们在实验上证明了一种普遍的游戏理论形式主义,用于产生有影响力的机器人行为,而不是重复互动的有效性降低。接下来,我们为Stackelberg游戏提出了三个修改,这些游戏使机器人的政策具有影响力和不可预测性。我们最终在模拟和用户研究中测试了这些修改:我们的结果表明,故意使他们的行为更难预期的机器人能够更好地维持对长期互动的影响。在此处查看视频:https://youtu.be/ydo83cgjz2q
translated by 谷歌翻译
子格式微型航空车(MAV)中的准确而敏捷的轨迹跟踪是具有挑战性的,因为机器人的小规模会引起大型模型不确定性,要求强大的反馈控制器,而快速的动力学和计算约束则阻止了计算上昂贵的策略的部署。在这项工作中,我们提出了一种在MIT SoftFly(一个子)MAV(0.7克)上进行敏捷和计算有效轨迹跟踪的方法。我们的策略采用了级联的控制方案,在该方案中,自适应态度控制器与受过训练的神经网络政策相结合,以模仿轨迹跟踪可靠的管模型模型预测控制器(RTMPC)。神经网络政策是使用我们最近的工作获得的,这使该政策能够保留RTMPC的稳健性,但以其计算成本的一小部分。我们通过实验评估我们的方法,即使在更具挑战性的操作中,达到均方根误差也低于1.8 cm,与我们先前的工作相比,最大位置误差减少了60%,并证明了对大型外部干扰的稳健性
translated by 谷歌翻译