隐式神经网络已成功用于点云的表面重建。然而,它们中的许多人面临着可扩展性问题,因为它们将整个对象或场景的异构面功能编码为单个潜在载体。为了克服这种限制,一些方法在粗略普通的3D网格或3D补丁上推断潜伏向量,并将它们插入以应对占用查询。在这样做时,它们可以与对象表面上采样的输入点进行直接连接,并且它们在空间中均匀地附加信息,而不是其最重要的信息,即在表面附近。此外,依赖于固定的补丁大小可能需要离散化调整。要解决这些问题,我们建议使用点云卷积并计算每个输入点的潜伏向量。然后,我们使用推断的权重在最近的邻居上执行基于学习的插值。对象和场景数据集的实验表明,我们的方法在大多数古典指标上显着优于其他方法,产生更精细的细节和更好的重建更薄的卷。代码可在https://github.com/valeoai/poco获得。
translated by 谷歌翻译
从众包标签或公开的数据创建的大规模数据集已经至关重要,为大规模学习算法提供培训数据。虽然这些数据集更容易获取,但数据经常嘈杂和不可靠,这是对弱监督学习技术的激励研究。在本文中,我们提出了原始想法,帮助我们在变更检测的背景下利用此类数据集。首先,我们提出了引导的各向异性扩散(GAD)算法,其使用输入图像改善语义分割结果作为执行边缘保留滤波的引导件。然后,我们展示了它在改变检测中量身定制的两个弱监督的学习策略中的潜力。第一策略是一种迭代学习方法,它将模型优化和数据清理使用GAD从开放矢量数据生成的大规模改变检测数据集中提取有用信息。第二个在新的空间注意层内包含GAD,其增加训练训练的弱监管网络的准确性,以从图像级标签执行像素级预测。在4个不同的公共数据集上展示了关于最先进的最先进的改进。
translated by 谷歌翻译
最近对隐含形状表示的兴趣日益增长。与明确的陈述相反,他们没有解决局限性,他们很容易处理各种各样的表面拓扑。为了了解这些隐式表示,电流方法依赖于一定程度的形状监督(例如,内部/外部信息或距离形状知识),或者至少需要密集点云(以近似距离 - 到 - 到 - 形状)。相比之下,我们介绍{\方法},一种用于学习形状表示的自我监督方法,从可能极其稀疏的点云。就像在水牛的针问题一样,我们在点云上“掉落”(样本)针头,认为,静统计地靠近表面,针端点位于表面的相对侧。不需要形状知识,点云可以高稀疏,例如,作为车辆获取的Lidar点云。以前的自我监督形状表示方法未能在这种数据上产生良好的结果。我们获得定量结果与现有的形状重建数据集上现有的监督方法标准,并在Kitti等硬自动驾驶数据集中显示有前途的定性结果。
translated by 谷歌翻译
虽然对2D图像的零射击学习(ZSL)进行了许多研究,但其在3D数据中的应用仍然是最近且稀缺的,只有几种方法限于分类。我们在3D数据上介绍了ZSL和广义ZSL(GZSL)的第一代生成方法,可以处理分类,并且是第一次语义分割。我们表明它达到或胜过了INTEMNET40对归纳ZSL和归纳GZSL的ModelNet40分类的最新状态。对于语义分割,我们创建了三个基准,用于评估此新ZSL任务,使用S3DIS,Scannet和Semantickitti进行评估。我们的实验表明,我们的方法优于强大的基线,我们另外为此任务提出。
translated by 谷歌翻译
控制蜂窝网络中的天线倾斜必须在网络覆盖和容量之间达到有效的权衡。在本文中,我们设计了从现有数据(在所谓的被动学习设置中)的算法最佳倾斜控制策略或由算法主动生成的数据(活动学习设置)。我们将这种算法的设计形式形式线性多臂杆(CL-MAb)中的最佳策略识别(BPI)问题。一个手臂代表天线倾斜更新;上下文捕获当前的网络条件;奖励对应于改善性能,混合覆盖和容量;目标是识别,具有给定的置信度,一个大约最佳的政策(将上下文映射到具有最大奖励的手臂的函数。对于CL-MAB在主动和被动学习设置中,我们在任何算法返回近似最佳策略所需的样本数量上获得信息 - 理论下限,以及实现这些基本限制的设计算法。我们将我们的算法应用于蜂窝网络中的远程电气倾斜(RET)优化问题,并显示它们可以使用比天真或现有的规则的学习算法更少的数据采样产生最佳倾斜更新策略。
translated by 谷歌翻译
传统文本分类方法通常需要良好数量的标记数据,这很难获得,尤其是限制域或较少的广泛语言。这种缺乏标记的数据导致了低资源方法的兴起,这在自然语言处理中具有低数据可用性。其中,零射击学习脱颖而出,它包括在没有任何先前标记的数据的情况下学习分类器。通过此方法报告的最佳结果使用变压器等语言模型,但下降到两个问题:高执行时间和无法处理长文本作为输入。本文提出了一种新的模型Zeroberto,它利用无监督的聚类步骤来获得分类任务之前的压缩数据表示。我们展示Zeroberto对长输入和更短的执行时间具有更好的性能,在FOLHauol数据集中的F1分数中表现出XLM-R大约12%。关键词:低资源NLP,未标记的数据,零射击学习,主题建模,变形金刚。
translated by 谷歌翻译
由于早期的工作和新算法的开发人员,追溯式,本文使用可达性分析来验证跟随算法的安全性,这是一种用于阻尼停止和转移流量波的控制器。通过我们的物理平台收集的超过1100英里的驾驶数据,我们通过将其与人类驾驶行为进行比较来验证我们的分析结果。跟随控制器已经证明以低速抑制停止和转向流量波,但之前对其相对安全的分析仅限于加速度的上下界限。为了在先前的分析上进行扩展,可以使用可达性分析来研究其最初测试的速度的安全性,并且还处于更高的速度。示出了两种具有不同标准的安全分析配方:基于距离和基于时间的距离。跟随基于距离的标准被认为是安全的。然而,仿真结果表明,追踪者不代表人类驱动程序 - 它在车辆后面太紧密,特别是人类将认为是不安全的。另一方面,在基于前沿的安全分析的情况下,跟随不再被认为是安全的。提出了一种修改的追踪,以满足基于时间的安全标准。拟议的追随者的仿真结果表明,其响应能够更好地代表人类驾驶员行为。
translated by 谷歌翻译
这项正在进行的工作考虑了在多助理系统中自主行驶领域的可达性的安全分析。我们为速度游戏进行差异游戏后的车辆的安全问题,并研究不同的建模策略如何产生非常不同的行为,而不管其他情况策略的有效性如何。鉴于现实生活驾驶场景的性质,我们提出了我们的制定的建模策略,该策略占代理人之间的微妙互动,并将其Hamiltonian结果与其他基线进行比较。我们的配方鼓励降低汉密尔顿 - 雅各比安全性分析的保守性,以便在导航期间提供更好的安全保障。
translated by 谷歌翻译
在过去的十年中,在杂交无人驾驶空中水下车辆的研究中努力,机器人可以轻松飞行和潜入水中的机械适应水平。然而,大多数文献集中在物理设计,建筑物的实际问题上,最近,低水平的控制策略。在高级情报的背景下,如运动规划和与现实世界的互动的情况下已经完成。因此,我们在本文中提出了一种轨迹规划方法,允许避免避免未知的障碍和空中媒体之间的平滑过渡。我们的方法基于经典迅速探索随机树的变体,其主要优点是处理障碍,复杂的非线性动力学,模型不确定性和外部干扰的能力。该方法使用\ Hydrone的动态模型,提出具有高水下性能的混合动力车辆,但我们认为它可以很容易地推广到其他类型的空中/水生平台。在实验部分中,我们在充满障碍物的环境中显示了模拟结果,其中机器人被命令执行不同的媒体运动,展示了我们的策略的适用性。
translated by 谷歌翻译
在这项工作中,研究了来自磁共振图像的脑年龄预测的深度学习技术,旨在帮助鉴定天然老化过程的生物标志物。生物标志物的鉴定可用于检测早期神经变性过程,以及预测与年龄相关或与非年龄相关的认知下降。在这项工作中实施并比较了两种技术:应用于体积图像的3D卷积神经网络和应用于从轴向平面的切片的2D卷积神经网络,随后融合各个预测。通过2D模型获得的最佳结果,其达到了3.83年的平均绝对误差。 - Neste Trabalho S \〜AO InvestigaDAS T \'Ecnicas de Aprendizado Profundo Para a previ \ c {c} \〜ate daade脑电站a partir de imagens de resson \ ^ ancia magn \'etica,Visando辅助Na Identifica \ c {C} \〜AO de BioMarcadores Do Processo Natural de Envelhecimento。一个identifica \ c {c} \〜ao de bioMarcarcores \'e \'util para a detec \ c {c} \〜ao de um processo neurodegenerativo em Est \'Agio无数,Al \'em de possibilitar Prever Um decl 'inio cognitivo relacionado ou n \〜ao \`一个懒惰。 Duas T \'ECICAS S \〜AO ImportyAdas E Comparadas Teste Trabalho:Uma Rede神经卷应3D APLICADA NA IMAGEM VOLUM \'ETRICA E UME REDE神经卷轴2D APLICADA A FATIAS DO PANIAS轴向,COM后面fus \〜AO DAS PREDI \ C {c} \ \ oes个人。 o Melhor ResultAdo Foi optido Pelo Modelo 2D,Que Alcan \ C {C} OU UM ERRO M \'EDIO ABSOLUTO DE 3.83 ANOS。
translated by 谷歌翻译