Koopman运算符是无限维的运算符,可全球线性化非线性动态系统,使其光谱信息可用于理解动态。然而,Koopman运算符可以具有连续的光谱和无限维度的子空间,使得它们的光谱信息提供相当大的挑战。本文介绍了具有严格融合的数据驱动算法,用于从轨迹数据计算Koopman运算符的频谱信息。我们引入了残余动态模式分解(ResDMD),它提供了第一种用于计算普通Koopman运算符的Spectra和PseudtoStra的第一种方案,无需光谱污染。使用解析器操作员和RESDMD,我们还计算与测量保存动态系统相关的光谱度量的平滑近似。我们证明了我们的算法的显式收敛定理,即使计算连续频谱和离散频谱的密度,也可以实现高阶收敛即使是混沌系统。我们展示了在帐篷地图,高斯迭代地图,非线性摆,双摆,洛伦茨系统和11美元延长洛伦兹系统的算法。最后,我们为具有高维状态空间的动态系统提供了我们的算法的核化变体。这使我们能够计算与具有20,046维状态空间的蛋白质分子的动态相关的光谱度量,并计算出湍流流过空气的误差界限的非线性Koopman模式,其具有雷诺数为$> 10 ^ 5 $。一个295,122维的状态空间。
translated by 谷歌翻译
Neyman-Scott processes (NSPs) are point process models that generate clusters of points in time or space. They are natural models for a wide range of phenomena, ranging from neural spike trains to document streams. The clustering property is achieved via a doubly stochastic formulation: first, a set of latent events is drawn from a Poisson process; then, each latent event generates a set of observed data points according to another Poisson process. This construction is similar to Bayesian nonparametric mixture models like the Dirichlet process mixture model (DPMM) in that the number of latent events (i.e. clusters) is a random variable, but the point process formulation makes the NSP especially well suited to modeling spatiotemporal data. While many specialized algorithms have been developed for DPMMs, comparatively fewer works have focused on inference in NSPs. Here, we present novel connections between NSPs and DPMMs, with the key link being a third class of Bayesian mixture models called mixture of finite mixture models (MFMMs). Leveraging this connection, we adapt the standard collapsed Gibbs sampling algorithm for DPMMs to enable scalable Bayesian inference on NSP models. We demonstrate the potential of Neyman-Scott processes on a variety of applications including sequence detection in neural spike trains and event detection in document streams.
translated by 谷歌翻译
在低灯条件下捕获的图像遭受低可视性和各种成像伪影,例如真实噪音。现有的监督启示算法需要大量的像素对齐的训练图像对,这很难在实践中准备。虽然弱监督或无人监督的方法可以缓解这些挑战,但不使用配对的训练图像,由于缺乏相应的监督,一些现实世界的文物不可避免地被错误地放大。在本文中,而不是使用完美的对齐图像进行培训,我们创造性地使用未对准的现实世界图像作为指导,这很容易收集。具体地,我们提出了一个交叉图像解剖线程(CIDN),以分别提取来自低/常光图像的交叉图像亮度和图像特定内容特征。基于此,CIDN可以同时校正特征域中的亮度和抑制图像伪像,其在很大程度上将鲁棒性增加到像素偏移。此外,我们收集了一个新的低光图像增强数据集,包括具有现实世界腐败的未对准培训图像。实验结果表明,我们的模型在新建议的数据集和其他流行的低光数据集中实现了最先进的表演。
translated by 谷歌翻译
我们认为当前的红外标准,用于优化用户体验,测量太窄的IR空间的一部分。如果IR系统较弱,这些指标缺乏或完全过滤出需要改进的更深层次的文件。如果IR系统相对强,则这些指标欠更深的相关文档,这些文档可以在用户可消化的层次结构或文本摘要中呈现出甚至更强大的IR系统,这些文件甚至可以呈现来自数十或数百个相关文档的内容。我们从过去28年重新分析了超过70个TREC曲目,显示大约一半的欠压排名的文件,几乎所有的缺乏尾部文件。我们展示在2020年的深度学习轨道中,神经系统在排名第一的文件中实际上是近乎最佳的,而在尾部文件上只有BM25的适度增益相比。我们的分析基于简单的新系统导向度量,“雾化搜索长度”,它能够在任何深度准确且均匀地测量所有相关文档。
translated by 谷歌翻译
从移动设备收集的位置数据代表个人和社会水平的移动性行为。这些数据具有从运输计划到疫情建模的重要应用。但是,必须克服最佳服务的问题:数据通常代表有限的人口样本和数据危害隐私的数据。为了解决这些问题,我们展示并评估用于使用在实际位置数据上培训的深频复制神经网络(RNN)来生成合成移动数据的系统。该系统将群体分发作为输入,为相应的合成群生成移动性跟踪。相关的生成方法尚未解决在较长时间内捕获个人移动行为中的模式和变异性的挑战,同时还平衡了具有隐私的现实数据的产生。我们的系统利用RNNS的能力生成复杂和新序列的能力,同时保留训练数据的模式。此外,该模型引入了用于校准各个级别的合成和实际数据之间的变化的随机性。这是捕获人类移动性的可变性,并保护用户隐私。基于位置的服务(LBS)来自22,700多种移动设备的数据用于实用程序和隐私度量的实验评估。我们示出了生成的移动数据保留了实际数据的特征,同时从个人级别的实际数据变化,并且在此变化量匹配真实数据内的变化。
translated by 谷歌翻译
元学习传统上,传统上依赖于整个任务来迭代改善模型的学习动态。但是,当缩放到复杂任务时,这种方法是在计算上难以解决的。我们使用张量处理单元(TPU)提出了一种分布式进化元学习策略,该张量处理单元(TPU)非常平行,可扩展到任意长的任务,内存成本没有增加。使用在Omniglot DataSet上进行的原型网络培训,我们在5次分类问题上实现了98.4%的准确性。我们的算法使用的存储器多达40倍,而不是自动差异计算梯度,结果模型可实现高精度培训的等效物(99.6%)的1.3%内的精度。我们观察到更高的分类准确性高达99.1%,人口配置较大。我们进一步通过实验验证了跨各种培训条件的ES-Protonet的稳定性和性能(不同的人口大小,模型规模,工人数量,射击,方式,es upperameters等)。我们的贡献是双重的:我们在监督环境中提供了对进化元学习的第一次评估,并为TPU的分布式演进策略创建了一般框架。
translated by 谷歌翻译
最近的自我监督学习方法能够学习高质量的图像表示,并通过监督方法关闭差距。但是,这些方法无法逐步获取新的知识 - 事实上,它们实际上主要仅用为具有IID数据的预训练阶段。在这项工作中,我们在没有额外的记忆或重放的情况下调查持续学习制度的自我监督方法。为防止忘记以前的知识,我们提出了功能正规化的使用。我们将表明,朴素的功能正则化,也称为特征蒸馏,导致可塑性的低可塑性,因此严重限制了连续的学习性能。为了解决这个问题,我们提出了预测的功能正则化,其中一个单独的投影网络确保新学习的特征空间保留了先前的特征空间的信息,同时允许学习新功能。这使我们可以防止在保持学习者的可塑性时忘记。针对应用于自我监督的其他增量学习方法的评估表明我们的方法在不同场景和多个数据集中获得竞争性能。
translated by 谷歌翻译
临床票据是记录患者信息的有效方法,但难以破译非专家的难以破译。自动简化医学文本可以使患者提供有关其健康的有价值的信息,同时节省临床医生。我们提出了一种基于词频率和语言建模的医学文本自动简化的新方法,基于富裕的外行术语的医疗本体。我们发布了一对公开可用的医疗句子的新数据集,并由临床医生简化了它们的版本。此外,我们定义了一种新颖的文本简化公制和评估框架,我们用于对我们对现有技术的方法进行大规模人类评估。我们基于在医学论坛数据上培训的语言模型的方法在保留语法和原始含义时产生更简单的句子,超越现有技术。
translated by 谷歌翻译
本文介绍了在公开不确定域中描述和解释机器人目标的问题的集成解决方案。鉴于所需情况的正式规范,其中仅通过其性质描述了对象,通用规划和推理工具用于导出机器人的适当行动。这些目标是通过在线组合的分层规划,状态估计和执行,其在具有实质上闭塞和传感误差的真实机器人域中运行的鲁棒性。
translated by 谷歌翻译
最近已被证明扩散模型产生高质量的合成图像,尤其是与指导技术配对,以促进忠诚的多样性。我们探索文本条件图像综合问题的扩散模型,并比较了两种不同的指导策略:剪辑指导和自由分类指导。我们发现后者是人类评估者的优选,用于光敏和标题相似度,并且通常产生光素质拟种样品。使用自由分类指导的35亿参数文本条件扩散模型的样本由人类评估者对来自Dall-E的人的人们青睐,即使后者使用昂贵的剪辑重新划分。此外,我们发现我们的模型可以进行微调,以执行图像修复,从而实现强大的文本驱动的图像编辑。我们在过滤的数据集中培训较小的模型,并在https://github.com/openai/glide-text2im释放代码和权重。
translated by 谷歌翻译