最近的工作表明,难以察觉的扰动可以应用于工艺未被动实施例(ULE),即其内容不能用于改善训练期间的分类器的图像。在本文中,我们揭示了研究人员应遵循的道路,因为它们最初制定了(Uleos)。本文进行了四项贡献。首先,我们展示了Uleos利用颜色,因此,可以通过简单的灰度预过滤来减轻它们的效果,而无需诉诸对抗性培训。其次,我们向Uleos提出了一个延伸,它被称为uleo-grayaugs,这将通过在优化期间利用灰度知识和数据增强来迫使所产生的ules远离频道明智的颜色扰动。第三,我们表明,在复杂的卷积神经网络(CNN)分类器的情况下,使用多层的Perceptrons(MLP)产生的Uleos是有效的,这表明CNN遭受了对电机的特定漏洞。第四,我们证明当分类器培训ULEOS时,对抗性训练将防止在清洁图像和对抗性图像上测量的准确度。在一起,我们的贡献代表了不可见的例子的艺术状态的大量进展,但也揭示了他们行为的重要特征,必须更好地理解,以实现进一步的改进。
translated by 谷歌翻译
快速,高度准确,可靠的引力波浪的推动,可以实现实时多信使天文学。目前贝叶斯推理方法虽然高度准确可靠,但很慢。深度学习模型已经表明了引力波的推理任务非常快速,但由于神经网络的黑箱性质,它们的产出本质上是可疑的。在这项工作中,我们通过应用了多头卷积神经网络产生的近似后验的重要性抽样加入贝叶斯推论和深度学习。神经网络参数化Von Mises-Fisher和天空坐标和高斯分布的天空坐标和两个群众,用于给定Ligo和Virgo探测器的模拟重力波注射。我们为看不见的引力波事件产生跨ysmaps,这是几分钟内使用贝叶斯推理产生的高等类似的预测。此外,我们可以检测神经网络的差,并迅速向它们标记。
translated by 谷歌翻译
我们提供了证据表明,学到的密度功能理论(``dft')的力场已准备好进行基态催化剂发现。我们的关键发现是,尽管预测的力与地面真相有很大差异,但使用从超过50 \%的评估系统中使用RPBE功能的能量与使用RPBE功能相似或较低能量的力量的力量与使用RPBE功能相似或较低的力量放松。这具有令人惊讶的含义,即学习的潜力可能已经准备好在挑战性的催化系统中替换DFT,例如在Open Catalyst 2020数据集中发现的电位。此外,我们表明,在局部谐波能量表面上具有与目标DFT能量相同的局部谐波能量表面训练的力场也能够在50 \%的情况下找到较低或相似的能量结构。与在真实能量和力量训练的标准模型相比,这种``简易电位''的收敛步骤更少,这进一步加速了计算。它的成功说明了一个关键:即使模型具有高力误差,学到的电位也可以定位能量最小值。结构优化的主要要求仅仅是学到的电位具有正确的最小值。由于学到的电位与系统大小的速度快速且尺寸为线性,因此我们的结果开辟了快速找到大型系统基础状态的可能性。
translated by 谷歌翻译
语言模型通常仅在文本上进行培训,而无需其他基础。关于从这种过程中可以推断出多少自然语言语义的争论。我们证明,可以从理想的语言模型中提取句子之间的判断,该模型可以完美地了解其目标分布,假设训练句子是由Gricean Agents产生的,即遵循实用学语言学理论的基本交流原理的代理人。我们还表明,可以从对这种Gricean数据训练的语言模型的预测中解码需要判断。我们的结果揭示了一种理解未标记的语言数据中编码的语义信息的途径,以及从语言模型中提取语义的潜在框架。
translated by 谷歌翻译
城市化及其问题需要对城市动态,尤其是现代城市复杂而多样化的生活方式的深入和全面的了解。数字化的数据可以准确捕获复杂的人类活动,但缺乏人口统计数据的解释性。在本文中,我们研究了美国11个都会区的120万人到110万个地方的出行探访模式的隐私增强数据集,以检测美国最大的美国城市中的潜在行动行为和生活方式。尽管出行访问的复杂性很大,但我们发现生活方式可以自动分解为12种潜在的可解释的活动行为,人们如何将购物,饮食,工作或利用空闲时间结合起来。我们没有描述具有单一生活方式的人,而是发现城市居民的行为是这些行为的混合。那些被检测到的潜在活动行为同样存在于城市之间,无法通过主要人口特征来完全解释。最后,我们发现这些潜在行为与在控制人口特征之后,即使在控制人口特征之后,这些潜在行为也与经验丰富的收入隔离,运输或健康行为有关。我们的结果表明,与活动行为相辅相成,以了解城市动态的重要性。
translated by 谷歌翻译
为了扩大培训数据,研究人员通常希望合并两个或更多使用不同标签方案创建的数据集。本文考虑了两个数据集,这些数据集标记了不同标签方案下的词性词性(POS)标签,并利用一个数据集的监督标签,以帮助为另一个数据集生成标签。本文进一步讨论了这种方法的理论困难,并提出了一种新型的监督架构,该架构采用变压器来解决两个完全脱节数据集的问题。结果与最初的期望和探索探索不同,以使用与不同标签合并数据集的使用。
translated by 谷歌翻译
神经算法推理的基石是解决算法任务的能力,尤其是以一种概括分布的方式。尽管近年来,该领域的方法学改进激增,但它们主要集中在建立专家模型上。专业模型能够学习仅执行一种算法或具有相同控制流骨干的算法的集合。相反,在这里,我们专注于构建通才神经算法学习者 - 单个图形神经网络处理器,能够学习执行各种算法,例如分类,搜索,动态编程,路径触发和几何学。我们利用CLRS基准来凭经验表明,就像在感知领域的最新成功一样,通才算法学习者可以通过“合并”知识来构建。也就是说,只要我们能够在单任务制度中学习很好地执行它们,就可以以多任务的方式有效地学习算法。在此激励的基础上,我们为CLR提供了一系列改进,对CLR的输入表示,培训制度和处理器体系结构,将平均单任务性能提高了20%以上。然后,我们进行了多任务学习者的彻底消融,以利用这些改进。我们的结果表明,一位通才学习者有效地结合了专家模型所捕获的知识。
translated by 谷歌翻译
我们解决了在室内环境中对于具有有限感应功能和有效载荷/功率限制的微型航空车的高效3-D勘探问题。我们开发了一个室内探索框架,该框架利用学习来预测看不见的区域的占用,提取语义特征,样本观点,以预测不同探索目标的信息收益以及计划的信息轨迹,以实现安全和智能的探索。在模拟和实际环境中进行的广泛实验表明,就结构化室内环境中的总路径长度而言,所提出的方法的表现优于最先进的勘探框架,并且在勘探过程中的成功率更高。
translated by 谷歌翻译
实时机器学习检测算法通常在自动驾驶汽车技术中发现,并依赖优质数据集。这些算法在日常条件以及强烈的阳光下都能正常工作。报告表明,眩光是撞车事故最突出的两个最突出的原因之一。但是,现有的数据集,例如LISA和德国交通标志识别基准,根本不反映Sun Glare的存在。本文介绍了眩光交通标志数据集:在阳光下重大视觉干扰下,具有基于美国的交通标志的图像集合。眩光包含2,157张带有阳光眩光的交通标志图像,从33个美国道路录像带中拉出。它为广泛使用的Lisa流量标志数据集提供了必不可少的丰富。我们的实验研究表明,尽管几种最先进的基线方法在没有太阳眩光的情况下对交通符号数据集进行了训练和测试,但在对眩光进行测试时,它们遭受了极大的痛苦(例如,9%至21%的平均图范围为9%至21%。 ,它明显低于LISA数据集上的性能)。我们还注意到,当对Sun Glare中的交通标志图像进行培训时,当前的架构具有更好的检测准确性(例如,主流算法平均42%的平均地图增益)。
translated by 谷歌翻译
在许多情况下,有必要通过观察时间序列监视复杂的系统,并确定何时发生异源事件,以便采取相关的动作。确定当前的观察是否异常是具有挑战性的。它需要从历史数据中学习动力学的外推性概率模型,并使用有限数量的当前观察结果来进行分类。我们利用长期概率预测的最新进展,即{\ em Deep概率Koopman},构建了一种在多维时序数据中对异常进行分类的通用方法。我们还展示了如何利用具有域知识的模型来减少I型和II型错误。我们展示了我们提出的关于全球大气污染监测的重要现实世界任务的方法,并将其与NASA的全球地球系统模型集成在一起。该系统成功地检测到由于COVID-19锁定和野火等事件而导致的空气质量异常情况。
translated by 谷歌翻译