由于其固有的混沌性质,了解层次三重系统的长期演变是具有挑战性的,并且需要计算昂贵的模拟。在这里,我们提出了一个卷积神经网络模型,以通过在第一个$ 5 \ times 10^5 $内二进制轨道上查看其演变来预测层次三元组的稳定性。我们采用正规化的几体代码\ textsc {tsunami}来模拟$ 5 \ times 10^6 $层次结构三元组,我们从中生成了大型培训和测试数据集。我们开发了十二种不同的网络配置,它们使用三元组的轨道元素的不同组合并比较其性能。我们的最佳模型使用了6个时间序列,即半轴轴比率,内部和外偏心,相互倾向和围角的参数。该模型在曲线下达到了超过$ 95 \%$的区域,并告知了研究三重系统稳定性的相关参数。所有训练有素的模型均可公开使用,可以预测分层三重系统的稳定性$ 200 $ 200 $ $倍,比纯$ n $ body方法快。
translated by 谷歌翻译
在典型的自主驾驶堆栈中,计划和控制系统代表了两个最关键的组件,其中传感器检索并通过感知算法处理的数据用于实施安全舒适的自动驾驶行为。特别是,计划模块可以预测自动驾驶汽车应遵循正确的高级操作的路径,而控制系统则执行一系列低级动作,控制转向角度,油门和制动器。在这项工作中,我们提出了一个无模型的深钢筋学习计划者培训一个可以预测加速度和转向角度的神经网络,从而获得了一个单个模块,可以使用自我自我的本地化和感知算法处理的数据来驱动车辆-驾车。特别是,在模拟中进行了全面训练的系统能够在模拟和帕尔马市现实世界中的无障碍环境中平稳驱动,证明该系统具有良好的概括能力,也可以驱动驱动在培训方案之外的那些部分。此外,为了将系统部署在真正的自动驾驶汽车上,并减少模拟和现实世界中的差距,我们还开发了一个由微小的神经网络表示的模块,能够在期间重现真正的车辆动态行为模拟的培训。
translated by 谷歌翻译
电报是全球最常用的即时消息传递应用之一。其成功之所以在于提供高隐私保护和社交网络,如频道 - 虚拟房间,其中只有管理员可以发布和广播到所有订户的消息。然而,这些相同的功能促成了边界活动的出现,并且与在线社交网络一样常见,假账户的沉重存在。通过引入频道的验证和诈骗标记,电报开始解决这些问题。不幸的是,问题远未解决。在这项工作中,我们通过收集35,382个不同的渠道和超过130,000,000消息来进行大规模分析电报。我们研究电报标记为验证或骗局的渠道,突出显示类比和差异。然后,我们转到未标记的频道。在这里,我们发现一些臭名昭着的活动也存在于虚拟网络的隐私保存服务,例如梳理,共享非法成人和版权保护内容。此外,我们还确定并分析了另外两种类型的渠道:克隆和假货。克隆是发布另一个频道确切内容的频道,以获得订阅者和促进服务。相反,假货是试图冒充名人或知名服务的渠道。即使是最先进的用户甚至很难确定。要自动检测假频道,我们提出了一种机器学习模型,可以以86%的准确性识别它们。最后,我们研究了Sabmyk,这是一种阴谋理论,即利用假货和克隆在达到超过1000万用户的平台上迅速传播。
translated by 谷歌翻译
在本文中,我们专注于在线学习主动视觉在未知室内环境中的对象的搜索(AVS)的最优策略问题。我们建议POMP++,规划战略,介绍了经典的部分可观察蒙特卡洛规划(POMCP)框架之上的新制剂,允许免费培训,在线政策在未知的环境中学习。我们提出了一个新的信仰振兴战略,允许使用POMCP与动态扩展状态空间来解决在线生成平面地图的。我们评估我们在两个公共标准数据集的方法,AVD由是从真正的3D场景渲染扫描真正的机器人平台和人居ObjectNav收购,用>10%,比国家的the-改善达到最佳的成功率技术方法。
translated by 谷歌翻译
本文介绍了基于仅使用合成数据训练的深卷积神经网络的人体部位分割的新框架。该方法实现了尖端的结果,而无需培训具有人体部位的真实注释数据的模型。我们的贡献包括数据生成管道,该管道利用游戏引擎来创建用于训练网络的合成数据,以及一种结合边缘响应映射和自适应直方图均衡的新型预处理模块,以指导网络来学习网络人体部位的形状确保对照明条件的变化的稳健性。为了选择最佳候选架构,我们对真正的人体四肢的手动注释图像进行详尽的测试。我们进一步将我们的方法与若干高端商业分割工具进行了对体零分割任务的几个。结果表明,我们的方法通过显着的余量优于其他模型。最后,我们展示了一个消融研究来验证我们的预处理模块。通过本文,我们释放了所提出的方法以及所获取的数据集的实现。
translated by 谷歌翻译
在这项工作中,我们详细描述了深度学习和计算机视觉如何帮助检测AirTender系统的故障事件,AirTender系统是售后摩托车阻尼系统组件。监测飞行员运行的最有效方法之一是在其表面上寻找油污渍。从实时图像开始,首先在摩托车悬架系统中检测到Airtender,然后二进制分类器确定Airtender是否在溢出油。该检测是在YOLO5架构的帮助下进行的,而分类是在适当设计的卷积神经网络油网40的帮助下进行的。为了更清楚地检测油的泄漏,我们用荧光染料稀释了荧光染料,激发波长峰值约为390 nm。然后用合适的紫外线LED照亮飞行员。整个系统是设计低成本检测设置的尝试。船上设备(例如迷你计算机)被放置在悬架系统附近,并连接到全高清摄像头框架架上。板载设备通过我们的神经网络算法,然后能够将AirTender定位并分类为正常功能(非泄漏图像)或异常(泄漏图像)。
translated by 谷歌翻译
准确地估算主要山区盆地中的积雪对于水资源经理来说至关重要,以便做出影响当地和全球经济,野生动植物和公共政策的决策。目前,此估计需要多个配备LIDAR的飞机飞行或原位测量值,两者均昂贵,稀疏和对可访问区域有偏见。在本文中,我们证明了来自多个,公开可用的卫星和天气数据源的空间和时间信息的融合,可以估算关键山区的积雪。我们的多源模型的表现优于单源估计值5.0英寸RMSE,并且优于稀疏的原位测量值的估计值1.2英寸RMSE。
translated by 谷歌翻译
持续学习旨在从一系列任务中学习,能够同时记住新任务和旧任务。尽管提出了许多用于单级分类的方法,但在连续场景中,多标签分类仍然是一个具有挑战性的问题。我们第一次在域增量学习方案中研究多标签分类。此外,我们提出了一种有效的方法,该方法在任务数量方面具有对数复杂性,并且也可以在类增量学习方案中应用。我们在包装行业的现实世界多标签警报预测问题上验证了我们的方法。为了重现性,公开可用的数据集和用于实验的代码。
translated by 谷歌翻译
可以使用X射线自由电子激光器的强脉冲和短脉冲直接通过单次相干衍射成像直接观察到自由飞行中孤立的纳米样品的结构和动力学。广角散射图像甚至编码样品的三维形态信息,但是该信息的检索仍然是一个挑战。到目前为止,只有通过与高度约束模型拟合,需要对单镜头实现有效的三维形态重建,这需要有关可能的几何形状的先验知识。在这里,我们提出了一种更通用的成像方法。依赖于允许凸多面体描述的任何样品形态的模型,我们从单个银纳米颗粒中重建广角衍射模式。除了具有高对称性的已知结构动机外,我们还检索了以前无法访问的不完美形状和聚集物。我们的结果为单个纳米颗粒的真实3D结构确定以及最终的超快纳米级动力学的3D电影开辟了新的途径。
translated by 谷歌翻译
体外测试是对医疗设备毒性进行动物测试的替代方法。检测细胞作为第一步,细胞专家根据显微镜下的细胞毒性等级评估细胞的生长。因此,人类疲劳在错误制造中起着作用,使使用深度学习吸引力。由于培训数据注释的高成本,需要一种无手动注释的方法。我们提出了对不完美标签(SISSI)的无缝迭代半监督校正(SISSI),这是一种以半监督方式训练具有嘈杂和缺失注释的对象检测模型的新方法。我们的网络从使用简单的图像处理算法生成的嘈杂标签中学习,这些算法在自我训练期间迭代校正。由于伪标签中缺少边界框的性质,这会对训练产生负面影响,因此我们建议使用无缝克隆对动态生成的合成样图像进行训练。我们的方法成功地提供了一种自适应的早期学习校正技术来进行对象检测。事实证明,在分类和语义分割中应用的早期学习校正的组合被证明是比通常的半监督方法在三个不同的读者中使用> 15%的AP和> 20%的AR。我们的代码可在https://github.com/marwankefah/sissi上找到。
translated by 谷歌翻译