电缆在许多环境中无处不在,但容易出现自我闭合和结,使它们难以感知和操纵。挑战通常会随着电缆长度而增加:长电缆需要更复杂的松弛管理和策略,以促进可观察性和可及性。在本文中,我们专注于使用双边机器人自动弄清长达3米的电缆。我们开发了新的运动原语,以有效地解开长电缆和专门用于此任务的新型Gripper Jaws。我们提出了缠结操作(SGTM)的滑动和抓握,该算法将这些原始物与RGBD视觉构成迭代性毫无障碍。SGTM在隔离的外手上取消了67%的成功率,图8节和更复杂的配置上的50%。可以在https://sites.google.com/view/rss-2022-untangling/home上找到补充材料,可视化和视频。
translated by 谷歌翻译
为了解决复杂环境中的任务,机器人需要从经验中学习。深度强化学习是一种常见的机器人学习方法,但需要大量的反复试验才能学习,从而限制了其在物理世界中的部署。结果,机器人学习的许多进步都取决于模拟器。另一方面,模拟器内部的学习无法捕获现实世界的复杂性,很容易模拟器不准确,并且由此产生的行为并不适应世界上的变化。 Dreamer算法最近通过在学习的世界模型中进行计划,表现出巨大的希望,可以从少量互动中学习,从而超过了视频游戏中的纯强化学习。学习一个世界模型来预测潜在行动的结果,使计划可以在想象中进行计划,从而减少了真实环境中所需的反复试验量。但是,尚不清楚梦想家是否可以促进更快地学习物理机器人。在本文中,我们将Dreamer应用于4个机器人,以直接在网上学习,直接在现实世界中,而无需模拟器。 Dreamer训练一个四倍的机器人,从头开始,站起来,站起来,仅在1小时内就没有重置。然后,我们推动机器人,发现Dreamer在10分钟内适应以承受扰动或迅速翻身并站起来。在两个不同的机器人臂上,Dreamer学会了直接从相机图像和稀疏的奖励中挑选和放置多个物体,从而接近人类的性能。在轮式机器人上,Dreamer学会了纯粹从相机图像导航到目标位置,从而自动解决有关机器人方向的歧义。在所有实验中使用相同的超参数,我们发现Dreamer能够在现实世界中在线学习,建立强大的基线。我们释放我们的基础架构,用于世界模型在机器人学习中的未来应用。
translated by 谷歌翻译
图卷积学习导致了各个领域的许多令人兴奋的发现。但是,在某些应用中,传统图不足以捕获数据的结构和复杂性。在这种情况下,多编码自然出现是可以嵌入复杂动力学的离散结构。在本文中,我们开发了有关多编码的卷积信息处理,并引入了卷积多编码神经网络(MGNN)。为了捕获每个多数边缘内外的信息传播的复杂动力学,我们正式化了一个卷积信号处理模型,从而定义了多格画上信号,过滤和频率表示的概念。利用该模型,我们开发了多个学习架构,包括采样程序以降低计算复杂性。引入的体系结构用于最佳无线资源分配和仇恨言语本地化任务,从而比传统的图形神经网络的性能提高了。
translated by 谷歌翻译
在智能的建筑管理中,了解房间的人数及其位置对于更好地控制其照明,通风和供暖,并以降低的成本和改善的舒适度很重要。这通常是通过使用安装在房间天花板上的紧凑型嵌入式设备并集成低分辨率红外摄像机的人员来实现的,从而掩盖了每个人的身份。但是,为了准确检测,最新的深度学习模型仍然需要使用大量注释的图像数据集进行监督培训。在本文中,我们研究了适用于基于低分辨率红外图像的人检测的具有成本效益的方法。结果表明,对于此类图像,我们可以减少监督和计算的量,同时仍然达到高水平的检测准确性。从需要图像中每个人的边界框注释的单杆探测器,到仅依靠不包含人的未标记图像的自动编码器,可以在注释成本方面节省大量,以及计算较低的模型费用。我们在具有低分辨率红外图像的两个具有挑战性的顶级数据集上验证了这些实验发现。
translated by 谷歌翻译
序数模式的统计分析的最终目的是表征它们诱导的特征的分布。特别是,了解大类时间序列模型的对熵统计复杂性的联合分布将允许迄今无法获得的统计测试。在这个方向上工作,我们表征了Shannon经验的渐进分布,用于任何模型,在此模型中,真正的归一化熵既不为零也不为零。我们从中心极限定理(假设大时间序列),多元增量方法和其平均值的三阶校正获得了渐近分布。我们讨论了其他结果(精确,一阶和二阶校正)有关其准确性和数值稳定性的适用性。在建立有关香农熵的测试统计数据的一般框架内,我们提出了双边测试,该测试验证是否有足够的证据拒绝以下假设,即两个信号产生了具有相同Shannon熵的顺序模式。我们将此双边测试应用于来自三个城市(都柏林,爱丁堡和迈阿密)的每日最高温度时间序列,并获得了明智的结果。
translated by 谷歌翻译
模型校准衡量预测的概率估计与真实性可能性之间的一致性。正确的模型校准对于高风险应用至关重要。不幸的是,现代深层神经网络的校准不佳,损害了可信度和可靠性。由于组织边界的自然不确定性,医疗图像分割尤其遭受了这种情况。这对他们的损失功能感到愤怒,这有利于多数级别的过度自信。我们用Domino(一种域感知的模型校准方法)解决了这些挑战,该方法利用了类标签之间的语义混淆性和分层相似性。我们的实验表明,在头部图像分割中,我们受多米诺骨牌校准的深神经网络优于非校准模型和最先进的形态学方法。我们的结果表明,与这些方法相比,我们的方法可以始终如一地实现更好的校准,更高的准确性和更快的推理时间,尤其是在稀有类别上。该性能归因于我们的域知觉正规化,以告知语义模型校准。这些发现表明,班级标签之间语义联系在建立深度学习模型的信心中的重要性。该框架有可能提高通用医学图像分割模型的可信度和可靠性。本文的代码可在以下网址获得:https://github.com/lab-smile/domino。
translated by 谷歌翻译
我们研究了数据驱动的深度学习方法的潜力,即从观察它们的混合物中分离两个通信信号。特别是,我们假设一个信号之一的生成过程(称为感兴趣的信号(SOI)),并且对第二个信号的生成过程不了解,称为干扰。单通道源分离问题的这种形式也称为干扰拒绝。我们表明,捕获高分辨率的时间结构(非平稳性),可以准确地同步与SOI和干扰,从而带来了可观的性能增长。有了这个关键的见解,我们提出了一种域信息神经网络(NN)设计,该设计能够改善“现成” NNS和经典检测和干扰拒绝方法,如我们的模拟中所示。我们的发现突出了特定于交流领域知识的关键作用在开发数据驱动的方法方面发挥了作用,这些方法具有前所未有的收益的希望。
translated by 谷歌翻译
任何机器学习(ML)算法的性能受到其超参数的选择影响。由于培训和评估ML算法通常很昂贵,因此需要在实践中有效地计算高参数优化(HPO)方法。多数目标HPO的大多数现有方法都使用进化策略和基于元模型的优化。但是,很少有方法可以解释性能测量中的不确定性。本文提出了多目标超参数优化的结果,并在评估ML算法的情况下进行了不确定性。我们将树结构化parzen估计量(TPE)的采样策略与训练高斯过程回归(GPR)在异质噪声后获得的元模型相结合。关于三个分析测试功能和三个ML问题的实验结果表明,相对于超量指标,多目标TPE和GPR的改善。
translated by 谷歌翻译
我们研究了目标稳定的问题,并在机器人和车辆中避免了强大的障碍物,这些障碍物仅用于实现实时定位的目的。由于障碍物引起的拓扑障碍,该问题尤其具有挑战性,这排除了能够同时稳定和避免障碍的平稳反馈控制器的存在。为了克服这个问题,我们开发了一个基于视觉的混合控制器,该控制器可以使用磁滞机制和数据辅助主管在两种不同的反馈定律之间切换。本文的主要创新是将合适的感知图纳入混合控制器。这些地图可以从从车辆中的摄像机获得的数据中学到,并通过卷积神经网络(CNN)训练。在此感知图上​​的合适假设下,我们就融合和避免障碍物的轨迹建立了对车辆轨​​迹的理论保证。此外,在不同的情况下,对基于视觉的混合控制器进行了数值测试,包括嘈杂的数据,失败的传感器以及带有遮挡的相机。
translated by 谷歌翻译
在硅组织模型中,可以评估磁共振成像的定量模型。这包括对成像生物标志物和组织微结构参数的验证和灵敏度分析。我们提出了一种新的方法来生成心肌微结构的现实数值幻影。我们扩展了以前的研究,该研究考虑了心肌细胞的变异性,心肌细胞(插入式椎间盘)之间的水交换,心肌微结构混乱和四个钣金方向。在该方法的第一阶段,心肌细胞和钣金是通过考虑心肌到骨膜细胞连接的形状变异性和插入式椎间盘而产生的。然后,将薄板汇总和定向在感兴趣的方向上。我们的形态计量学研究表明,数值和真实(文献)心肌细胞数据的体积,长度以及一级和次要轴的分布之间没有显着差异($ p> 0.01 $)。结构相关性分析证实了硅内组织与实际组织的混乱类别相同。此外,心肌细胞的模拟螺旋角(HA)和输入HA(参考值)之间的绝对角度差($ 4.3^\ Circ \ PM 3.1^\ Circ $)与所测量HA之间的绝对角差有很好的一致性使用实验性心脏扩散张量成像(CDTI)和组织学(参考值)(Holmes等,2000)($ 3.7^\ Circ \ PM6.4^\ Circ $)和(Scollan等,1998)($ 4.9) ^\ circ \ pm 14.6^\ circ $)。使用结构张量成像(黄金标准)和实验性CDTI,输入和模拟CDTI的特征向量和模拟CDTI的角度之间的角度距离小于测量角度之间的角度距离。这些结果证实,所提出的方法比以前的研究可以为心肌产生更丰富的数值幻象。
translated by 谷歌翻译