随着全球气候变化影响影响世界的影响,需要集体努力来减少温室气体排放。能源部门是气候变化的最大贡献者,许多努力集中在减少对碳源发电厂的依赖,并转向可再生能源,如太阳能。太阳能电池板位置的全面数据库对于协助分析师和政策制定者来说,在定义太阳能的进一步扩展方面的策略方面很重要。在本文中,我们专注于创建太阳能电池板的世界地图。我们识别给定地理区域内的太阳能电池板的位置和总表面积。我们使用深度学习方法来使用空中图像自动检测太阳能电池板位置及其表面积。该框架由使用具有语义分割模型的串联串联使用图像分类器的双分支模型组成的框架在我们创建的卫星图像的日数据集上培训。我们的作品提供了一种用于检测太阳能电池板的高效和可扩展的方法,实现分类的精度为0.96,并且对于分割性能,IOU分数为0.82。
translated by 谷歌翻译
在实践中,非常苛刻,有时无法收集足够大的标记数据数据集以成功培训机器学习模型,并且对此问题的一个可能解决方案是转移学习。本研究旨在评估如何可转让的时间序列数据和哪些条件下的不同域之间的特征。在训练期间,在模型的预测性能和收敛速度方面观察到转移学习的影响。在我们的实验中,我们使用1,500和9,000个数据实例的减少数据集来模仿现实世界的条件。使用相同的缩小数据集,我们培训了两组机器学习模型:那些随着转移学习的培训和从头开始培训的机器学习模型。使用四台机器学习模型进行实验。在相同的应用领域(地震学)以及相互不同的应用领域(地震,语音,医学,金融)之间进行知识转移。我们在训练期间遵守模型的预测性能和收敛速度。为了确认所获得的结果的有效性,我们重复了实验七次并应用了统计测试以确认结果的重要性。我们研究的一般性结论是转移学习可能会增加或不会对模型的预测性能或其收敛速度产生负面影响。在更多细节中分析收集的数据,以确定哪些源域和目标域兼容以用于传输知识。我们还分析了目标数据集大小的效果和模型的选择及其超参数对转移学习的影响。
translated by 谷歌翻译
在本文中,我们提出了一种新的贝叶斯在线预测算法,用于局部可观察性(ATPO)下的Ad Hoc团队的问题设置,这使得与未知的队友执行未知任务的运行协作,而无需预先协调协议。与以前的作品不同,假设环境的完全可观察状态,ATPO使用代理商的观察来确定队友正在执行哪项任务的部分可观察性。我们的方法既不假设队友的行为也不是可见的,也不是环境奖励信号。我们在三个域中评估ATPO - 追踪域的两个修改版本,具有部分可观察性和过核域。我们的研究结果表明,ATPO在识别可能的任务中的大型文库中,在近乎最佳的时间内求助,以及在适应越来越大的问题尺寸方面可以进行高效的速度,可以有效和强大。
translated by 谷歌翻译
稀疏PCA是通过在主组件上添加稀疏性约束来从PCA获得的优化问题。即使在单组件情况下,稀疏的PCA也很难且难以近似。在本文中,我们对协方差矩阵的等级来解决稀疏PCA的计算复杂性。我们表明,如果协方差矩阵的等级是固定值,那么存在一种算法,其解决了全局最优性的稀疏PCA,其运行时间是多项式在特征的数量中。我们还向稀疏PCA的版本证明了类似结果,这需要主组件要脱节支持。
translated by 谷歌翻译
机器学习,在深入学习的进步,在过去分析时间序列方面表现出巨大的潜力。但是,在许多情况下,可以通过将其结合到学习方法中可能改善预测的附加信息。这对于由例如例如传感器位置的传感器网络而产生的数据至关重要。然后,可以通过通过图形结构建模,以及顺序(时间)信息来利用这种空间信息。适应深度学习的最新进展在各种图形相关任务中表明了有希望的潜力。但是,这些方法尚未在很大程度上适用于时间序列相关任务。具体而言,大多数尝试基本上围绕空间 - 时间图形神经网络巩固了时间序列预测的小序列长度。通常,这些架构不适合包含大数据序列的回归或分类任务。因此,在这项工作中,我们使用图形神经网络的好处提出了一种能够在多变量时间序列回归任务中处理这些长序列的架构。我们的模型在包含地震波形的两个地震数据集上进行测试,其中目标是预测在一组站的地面摇动的强度测量。我们的研究结果表明了我们的方法的有希望的结果,这是深入讨论的额外消融研究。
translated by 谷歌翻译
为了培训从输入/输出训练数据集基于相当任意凸面和两次可分散的损耗函数和正则化术语训练非线性动力系统的反复性神经网络模型,我们提出了使用顺序最小二乘来确定最佳网络参数和隐藏状态。另外,为了处理L1,L0和Group-Lasso常规程序的非平滑正则化术语,以及施加可能的非凸性约束,例如整数和混合整数约束,我们将序贯最小二乘与交替方向组合乘法器(ADMM)的方法。结果算法的性能,即我们呼叫指甲(非透露委员会迭代和最小二乘),在非线性系统识别基准中测试。
translated by 谷歌翻译
轨迹是不同的滑雪学科的基础。启用此类曲线的工具可以增强培训活动并丰富广播内容。但是,目前可用的解决方案基于地理局部传感器和表面型号。在这篇简短的论文中,我们提出了一种基于视频的方法来重建运动员在其性能期间遍历运动员的点序列。我们的原型由基于深度学习的算法的管道构成,以重建运动员的运动并根据相机的角度来可视化它。这是在没有任何相机校准的情况下为野外的不同滑雪学科实现。我们测试了我们在广播和智能手机捕获的高山滑雪和滑雪跳跃专业竞赛的视频解决方案。实现的定性结果显示了我们解决方案的潜力。
translated by 谷歌翻译
在本文中,我们提出了SC-REG(自助正规化)来学习过共同的前馈神经网络来学习\ EMPH {牛顿递减}框架的二阶信息进行凸起问题。我们提出了具有自助正规化(得分-GGN)算法的广义高斯 - 牛顿,其每次接收到新输入批处理时都会更新网络参数。所提出的算法利用Hessian矩阵中的二阶信息的结构,从而减少训练计算开销。虽然我们的目前的分析仅考虑凸面的情况,但数值实验表明了我们在凸和非凸面设置下的方法和快速收敛的效率,这对基线一阶方法和准牛顿方法进行了比较。
translated by 谷歌翻译
在终身环境中学习,动态不断发展,是对电流加强学习算法的艰难挑战。然而,这将是实际应用的必要特征。在本文中,我们提出了一种学习超策略的方法,其输入是时间,输出当时要查询的策略的参数。此超级策略验证,以通过引入受控偏置的成本来最大限度地提高估计的未来性能,有效地重用过去数据。我们将未来的性能估计与过去的绩效相结合,以减轻灾难性遗忘。为避免过度接收收集的数据,我们派生了我们嵌入惩罚期限的可差化方差。最后,我们在与最先进的算法相比,在逼真的环境中,经验验证了我们的方法,包括水资源管理和交易。
translated by 谷歌翻译
在本文中,我们对系统和输入矩阵的线性时变(LTV)系统的自适应状态观察问题感兴趣,这取决于未知的时变参数。假设这些参数满足一些已知的LTV动态,但初始条件未知。此外,状态等式由具有不确定恒定参数的外部系统产生的添加信号扰乱。我们的主要贡献是提出全局收敛状态观察者,该州只需要在系统上疲软的激励假设。
translated by 谷歌翻译