在本文中,我们提出了一种新的贝叶斯在线预测算法,用于局部可观察性(ATPO)下的Ad Hoc团队的问题设置,这使得与未知的队友执行未知任务的运行协作,而无需预先协调协议。与以前的作品不同,假设环境的完全可观察状态,ATPO使用代理商的观察来确定队友正在执行哪项任务的部分可观察性。我们的方法既不假设队友的行为也不是可见的,也不是环境奖励信号。我们在三个域中评估ATPO - 追踪域的两个修改版本,具有部分可观察性和过核域。我们的研究结果表明,ATPO在识别可能的任务中的大型文库中,在近乎最佳的时间内求助,以及在适应越来越大的问题尺寸方面可以进行高效的速度,可以有效和强大。
translated by 谷歌翻译
在这项工作中,我们将注意力集中在数据分布与基于Q学基于Q学基于函数近似之间的相互作用的研究。我们提供了一个理论和实证分析,以及为什么数据分布的不同性质可以有助于调节算法不稳定性的来源。首先,我们重新审视近似动态编程算法性能的理论界限。其次,我们提供了一种新型的四态MDP,突出了在线和离线设置中具有功能近似的Q学习算法的数据分布的影响。最后,我们通过实验评估数据分布属性在离线深度Q网算法的性能中的影响。我们的结果表明:(i)数据分布需要拥有某些属性,以便在离线设置中鲁棒地学习,即距离MDP的最佳策略和高覆盖范围内的分布在状态 - 动作空间上的低距离; (ii)高熵数据分布可以有助于减轻算法不稳定性的来源。
translated by 谷歌翻译
胎儿超声(US)中胎盘的自动分割由于(i)(i)胎盘外观的高度多样性而具有挑战性我们禁止在妊娠晚期进行整个胎盘评估的观点。在这项工作中,我们通过多任务学习方法解决了这三个挑战,该方法结合了单个卷积神经网络中胎盘位置(例如,前,后部)和语义胎盘分段的分类。通过分类任务,模型可以从更大,更多样化的数据集中学习,同时在有限的训练集条件下提高分割任务的准确性。通过这种方法,我们研究了多个评估者的注释的变异性,并表明我们的自动分割(前胎盘的骰子为0.86,后胎盘的骰子为0.83),与观察者内和观察者间的变异性相比,我们的自动段性能达到了人级的性能。最后,我们的方法可以使用由三个阶段组成的多视图US采集管道提供整个胎盘分割:多探针图像采集,图像融合和图像分段。这会导致对较大结构(例如胎盘中的胎盘)的高质量分割,其图像伪像降低,这超出了单个探针的视野。
translated by 谷歌翻译
本文提出了一种具有多个循环训练的训练方法,可在低位量化的卷积神经网络(CNN)中实现增强性能。量化是获得轻量级CNN的流行方法,其中使用预审计模型的初始化被广泛用于克服低分辨率量化中的降解性能。但是,实际值及其低位量化量之间的大量量化错误在获得复杂网络和大型数据集的可接受性能方面遇到了困难。所提出的训练方法在多个量化步骤中轻轻地将验证模型的知识传达给了低位量化模型。在每个量化步骤中,模型的训练重量用于初始化下一个模型的权重,而量化位深度减少了一个。随着量化位深度的微小变化,可以弥合性能差距,从而提供更好的权重初始化。在循环训练中,在训练低位量化模型后,其训练的权重用于初始化其准确模型要训练。通过以迭代方式使用精确模型的更好的训练能力,该方法可以在每个循环中为低位量化模型产生增强的训练重量。值得注意的是,训练方法可以分别提高ImageNet数据集上的二进制RESNET-18的TOP-1和前5个精度,分别为5.80%和6.85%。
translated by 谷歌翻译
随着深度学习生成模型的最新进展,它在时间序列领域的出色表现并没有花费很长时间。用于与时间序列合作的深度神经网络在很大程度上取决于培训中使用的数据集的广度和一致性。这些类型的特征通常在现实世界中不丰富,在现实世界中,它们通常受到限制,并且通常具有必须保证的隐私限制。因此,一种有效的方法是通过添加噪声或排列并生成新的合成数据来使用\ gls {da}技术增加数据数。它正在系统地审查该领域的当前最新技术,以概述所有可用的算法,并提出对最相关研究的分类法。将评估不同变体的效率;作为过程的重要组成部分,将分析评估性能的不同指标以及有关每个模型的主要问题。这项研究的最终目的是摘要摘要,这些领域的进化和性能会产生更好的结果,以指导该领域的未来研究人员。
translated by 谷歌翻译
由于其固有的混沌性质,了解层次三重系统的长期演变是具有挑战性的,并且需要计算昂贵的模拟。在这里,我们提出了一个卷积神经网络模型,以通过在第一个$ 5 \ times 10^5 $内二进制轨道上查看其演变来预测层次三元组的稳定性。我们采用正规化的几体代码\ textsc {tsunami}来模拟$ 5 \ times 10^6 $层次结构三元组,我们从中生成了大型培训和测试数据集。我们开发了十二种不同的网络配置,它们使用三元组的轨道元素的不同组合并比较其性能。我们的最佳模型使用了6个时间序列,即半轴轴比率,内部和外偏心,相互倾向和围角的参数。该模型在曲线下达到了超过$ 95 \%$的区域,并告知了研究三重系统稳定性的相关参数。所有训练有素的模型均可公开使用,可以预测分层三重系统的稳定性$ 200 $ 200 $ $倍,比纯$ n $ body方法快。
translated by 谷歌翻译
深度学习的高级面部识别以实现前所未有的准确性。但是,了解面部的本地部分如何影响整体识别性能仍然不清楚。除其他外,面部掉期已经进行了实验,但只是为了整个脸。在本文中,我们建议交换面部零件,以剥夺不同面部零件(例如眼睛,鼻子和嘴巴)的识别相关性。在我们的方法中,通过拟合3D先验来交换从源面转换为目标的零件,该零件在零件之间建立密集的像素对应关系,同时还要处理姿势差异。然后,无缝克隆用于在映射的源区域和目标面的形状和肤色之间获得平滑的过渡。我们设计了一个实验协议,该协议使我们能够在通过深网进行分类时得出一些初步结论,表明眼睛和眉毛区域的突出性。可在https://github.com/clferrari/facepartsswap上找到代码
translated by 谷歌翻译
大型语言模型(LLM)的最新进展已改变了自然语言处理(NLP)的领域。从GPT-3到Palm,每种新的大型语言模型都在推动自然语言任务的最新表现。除了自然语言的能力外,人们还对理解这种模型(接受大量数据,具有推理能力的培训)也引起了重大兴趣。因此,人们有兴趣为各种推理任务开发基准,并且在此类基准测试中测试LLM的初步结果似乎主要是积极的。但是,目前的基准相对简单,这些基准的性能不能用作支持的证据,很多时候是古怪的,对LLMS的推理能力提出了主张。截至目前,这些基准仅代表了一组非常有限的简单推理任务集,如果我们要衡量此类基于LLM的系统的真实限制,我们需要研究更复杂的推理问题。通过这种动机,我们提出了一个可扩展的评估框架,以测试LLM在人类智能的中心方面的能力,这是关于行动和变化的推理。我们提供的多个测试案例比任何先前建立的推理基准都更重要,并且每个测试案例都评估了有关行动和变化的推理的某些方面。对GPT-3(Davinci)基本版本的初步评估结果,在这些基准测试中显示了Subpar的性能。
translated by 谷歌翻译
在这篇扩展的抽象论文中,我们解决了因果机学习模型中的可解释性和针对性正则化的问题。特别是,我们专注于在观察到的混杂因素下估计单个因果/治疗效果的问题,这些问题可以控制并适应治疗对感兴趣结果的影响。针对因果环境调整的Black-Box ML模型在此任务中通常表现良好,但是它们缺乏可解释的输出,无法识别治疗异质性及其功能关系的主要驱动因素。我们提出了一种新型的深层反事实学习结构,用于估计可以同时进行的个人治疗效果:i)传达有针对性的正则化,并产生围绕感兴趣量的量化不确定性(即条件平均治疗效应); ii)解开协变量的基线预后和调节作用,并输出可解释的分数功能,描述了它们与结果的关系。最后,我们通过简单的模拟实验来证明该方法的使用。
translated by 谷歌翻译
复杂的深层神经网络(例如胶囊网络(CAPSNET))以计算密集型操作为代价表现出较高的学习能力。为了使其在边缘设备上的部署,我们建议利用近似计算来设计诸如SoftMax和Squash等复杂操作的近似变体。在我们的实验中,与确切功能相比,我们评估了通过ASIC设计流实施的设计和量化capsnets的准确性的区域,功耗和关键路径延迟之间的权衡。
translated by 谷歌翻译