在终身环境中学习,动态不断发展,是对电流加强学习算法的艰难挑战。然而,这将是实际应用的必要特征。在本文中,我们提出了一种学习超策略的方法,其输入是时间,输出当时要查询的策略的参数。此超级策略验证,以通过引入受控偏置的成本来最大限度地提高估计的未来性能,有效地重用过去数据。我们将未来的性能估计与过去的绩效相结合,以减轻灾难性遗忘。为避免过度接收收集的数据,我们派生了我们嵌入惩罚期限的可差化方差。最后,我们在与最先进的算法相比,在逼真的环境中,经验验证了我们的方法,包括水资源管理和交易。
translated by 谷歌翻译
机器学习算法支撑现代诊断辅助软件,这在临床实践中证明了有价值的,特别是放射学。然而,不准确的是,主要是由于临床样本的可用性有限,用于培训这些算法,妨碍他们在临床医生中更广泛的适用性,接受和识别。我们对最先进的自动质量控制(QC)方法进行了分析,可以在这些算法中实现,以估计其输出的确定性。我们验证了识别磁共振成像数据中的白质超收缩性(WMH)的大脑图像分割任务上最有前途的方法。 WMH是在上层前期成年中常见的小血管疾病的关联,并且由于其变化的尺寸和分布模式而尤其具有挑战性。我们的研究结果表明,不确定度和骰子预测的聚集在此任务的故障检测中最有效。两种方法在0.82至0.84的情况下独立改善平均骰子。我们的工作揭示了QC方法如何有助于检测失败的分割案例,从而使自动分割更可靠,适合临床实践。
translated by 谷歌翻译
电报是全球最常用的即时消息传递应用之一。其成功之所以在于提供高隐私保护和社交网络,如频道 - 虚拟房间,其中只有管理员可以发布和广播到所有订户的消息。然而,这些相同的功能促成了边界活动的出现,并且与在线社交网络一样常见,假账户的沉重存在。通过引入频道的验证和诈骗标记,电报开始解决这些问题。不幸的是,问题远未解决。在这项工作中,我们通过收集35,382个不同的渠道和超过130,000,000消息来进行大规模分析电报。我们研究电报标记为验证或骗局的渠道,突出显示类比和差异。然后,我们转到未标记的频道。在这里,我们发现一些臭名昭着的活动也存在于虚拟网络的隐私保存服务,例如梳理,共享非法成人和版权保护内容。此外,我们还确定并分析了另外两种类型的渠道:克隆和假货。克隆是发布另一个频道确切内容的频道,以获得订阅者和促进服务。相反,假货是试图冒充名人或知名服务的渠道。即使是最先进的用户甚至很难确定。要自动检测假频道,我们提出了一种机器学习模型,可以以86%的准确性识别它们。最后,我们研究了Sabmyk,这是一种阴谋理论,即利用假货和克隆在达到超过1000万用户的平台上迅速传播。
translated by 谷歌翻译
我们考虑使用深度神经网络时检测到(分发外)输入数据的问题,并提出了一种简单但有效的方法来提高几种流行的ood检测方法对标签换档的鲁棒性。我们的作品是通过观察到的,即大多数现有的OOD检测算法考虑整个训练/测试数据,无论每个输入激活哪个类进入(级别差异)。通过广泛的实验,我们发现这种做法导致探测器,其性能敏感,易于标记换档。为了解决这个问题,我们提出了一种类别的阈值方案,可以适用于大多数现有的OOD检测算法,并且即使在测试分布的标签偏移存在下也可以保持相似的OOD检测性能。
translated by 谷歌翻译
胎儿超声(US)中胎盘的自动分割由于(i)(i)胎盘外观的高度多样性而具有挑战性我们禁止在妊娠晚期进行整个胎盘评估的观点。在这项工作中,我们通过多任务学习方法解决了这三个挑战,该方法结合了单个卷积神经网络中胎盘位置(例如,前,后部)和语义胎盘分段的分类。通过分类任务,模型可以从更大,更多样化的数据集中学习,同时在有限的训练集条件下提高分割任务的准确性。通过这种方法,我们研究了多个评估者的注释的变异性,并表明我们的自动分割(前胎盘的骰子为0.86,后胎盘的骰子为0.83),与观察者内和观察者间的变异性相比,我们的自动段性能达到了人级的性能。最后,我们的方法可以使用由三个阶段组成的多视图US采集管道提供整个胎盘分割:多探针图像采集,图像融合和图像分段。这会导致对较大结构(例如胎盘中的胎盘)的高质量分割,其图像伪像降低,这超出了单个探针的视野。
translated by 谷歌翻译
在医学图像处理中,最重要的信息通常位于图像的小部分上。基于补丁的方法旨在仅使用图像中最相关的部分。寻找自动选择补丁的方法是一个挑战。在本文中,我们研究了两个选择斑块的标准:熵和光谱相似性标准。我们在不同级别的斑块大小上执行实验。我们在补丁的子集上训练卷积神经网络并分析训练时间。我们发现,除了需要减少预处理时间之外,基于熵收敛选择的贴片数据集的分类器比基于频谱相似性标准选择的斑块收敛的速度快,而且还会导致更高的精度。此外,与低熵斑块相比,高熵的斑块可导致更快的收敛性和更好的准确性。
translated by 谷歌翻译
最近的工作``与物理启发的图形神经网络的组合优化'[Nat Mach Intell 4(2022)367]引入了物理启发的无监督图形神经网络(GNN),以求解稀疏图上的组合优化问题。为了测试这些GNN的性能,工作的作者显示了两个基本问题的数值结果:最大切割和最大独立集(MIS)。他们得出的结论是,“图形神经网络优化器在标准杆或胜过现有的求解器上的性能,并且能够超越最新技术的状态,以达到数百万变量的问题。”在此评论中,我们表明,一种简单的贪婪算法在几乎线性的时间内运行,可以找到与GNN质量好得多的MIS问题的解决方案。对于GNN而言,对于一百万个变量的问题,贪婪的算法的速度更快为10^4美元。我们看不出有任何充分的理由解决这些GNN的MIS,以及使用大锤破裂螺母的理由。通常,许多关于神经网络在解决组合问题方面的优势的主张有没有足够稳定的风险,因为我们基于真正的严重问题缺乏标准的基准。我们提出了这样的硬基准之一,我们希望在提出任何优越性的主张之前对未来的神经网络优化者进行测试。
translated by 谷歌翻译
本文提出了一种具有多个循环训练的训练方法,可在低位量化的卷积神经网络(CNN)中实现增强性能。量化是获得轻量级CNN的流行方法,其中使用预审计模型的初始化被广泛用于克服低分辨率量化中的降解性能。但是,实际值及其低位量化量之间的大量量化错误在获得复杂网络和大型数据集的可接受性能方面遇到了困难。所提出的训练方法在多个量化步骤中轻轻地将验证模型的知识传达给了低位量化模型。在每个量化步骤中,模型的训练重量用于初始化下一个模型的权重,而量化位深度减少了一个。随着量化位深度的微小变化,可以弥合性能差距,从而提供更好的权重初始化。在循环训练中,在训练低位量化模型后,其训练的权重用于初始化其准确模型要训练。通过以迭代方式使用精确模型的更好的训练能力,该方法可以在每个循环中为低位量化模型产生增强的训练重量。值得注意的是,训练方法可以分别提高ImageNet数据集上的二进制RESNET-18的TOP-1和前5个精度,分别为5.80%和6.85%。
translated by 谷歌翻译
随着技术的快速进步,由于恶意软件活动的增加,安全性已成为一个主要问题,这对计算机系统和利益相关者的安全性和安全性构成了严重威胁。为了维持利益相关者,特别是最终用户的安全,保护数据免受欺诈性努力是最紧迫的问题之一。旨在破坏预期的计算机系统和程序或移动和Web应用程序的一组恶意编程代码,脚本,活动内容或侵入性软件称为恶意软件。根据一项研究,幼稚的用户无法区分恶意和良性应用程序。因此,应设计计算机系统和移动应用程序,以检测恶意活动以保护利益相关者。通过利用包括人工智能,机器学习和深度学习在内的新颖概念,可以使用许多算法来检测恶意软件活动。在这项研究中,我们强调了基于人工智能(AI)的技术来检测和防止恶意软件活动。我们详细介绍了当前的恶意软件检测技术,其缺点以及提高效率的方法。我们的研究表明,采用未来派的方法来开发恶意软件检测应用程序应具有很大的优势。对该综合的理解应帮助研究人员使用AI进行进一步研究恶意软件检测和预防。
translated by 谷歌翻译
随着深度学习生成模型的最新进展,它在时间序列领域的出色表现并没有花费很长时间。用于与时间序列合作的深度神经网络在很大程度上取决于培训中使用的数据集的广度和一致性。这些类型的特征通常在现实世界中不丰富,在现实世界中,它们通常受到限制,并且通常具有必须保证的隐私限制。因此,一种有效的方法是通过添加噪声或排列并生成新的合成数据来使用\ gls {da}技术增加数据数。它正在系统地审查该领域的当前最新技术,以概述所有可用的算法,并提出对最相关研究的分类法。将评估不同变体的效率;作为过程的重要组成部分,将分析评估性能的不同指标以及有关每个模型的主要问题。这项研究的最终目的是摘要摘要,这些领域的进化和性能会产生更好的结果,以指导该领域的未来研究人员。
translated by 谷歌翻译