在这项工作中,我们详细描述了深度学习和计算机视觉如何帮助检测AirTender系统的故障事件,AirTender系统是售后摩托车阻尼系统组件。监测飞行员运行的最有效方法之一是在其表面上寻找油污渍。从实时图像开始,首先在摩托车悬架系统中检测到Airtender,然后二进制分类器确定Airtender是否在溢出油。该检测是在YOLO5架构的帮助下进行的,而分类是在适当设计的卷积神经网络油网40的帮助下进行的。为了更清楚地检测油的泄漏,我们用荧光染料稀释了荧光染料,激发波长峰值约为390 nm。然后用合适的紫外线LED照亮飞行员。整个系统是设计低成本检测设置的尝试。船上设备(例如迷你计算机)被放置在悬架系统附近,并连接到全高清摄像头框架架上。板载设备通过我们的神经网络算法,然后能够将AirTender定位并分类为正常功能(非泄漏图像)或异常(泄漏图像)。
translated by 谷歌翻译
在机器学习中使用大型数据集已导致出色的结果,在某些情况下,在机器上认为不可能的任务中的人数优于人类。但是,在处理身体上的互动任务时,实现人类水平的表现,例如,在接触良好的机器人操作中,仍然是一个巨大的挑战。众所周知,规范笛卡尔阻抗进行此类行动对于成功执行至关重要。加强学习(RL)之类的方法可能是解决此类问题的有希望的范式。更确切地说,在解决新任务具有巨大潜力时,使用任务不足的专家演示的方法可以利用大型数据集。但是,现有的数据收集系统是昂贵,复杂的,或者不允许进行阻抗调节。这项工作是朝着数据收集框架迈出的第一步,适合收集与使用新颖的动作空间的RL问题公式相容的基于阻抗的专家演示的大型数据集。该框架是根据对机器人操纵的可用数据收集框架进行广泛分析后根据要求设计的。结果是一个低成本且开放的远程阻抗框架,它使人类专家能够展示接触式任务。
translated by 谷歌翻译
在本文中,我们介绍了一种新的离线方法,以使用演示(LFD)范式学习,在考虑用户对任务的直觉的同时,使用示范(LFD)范式学习,实现稳定性和性能约束,以找到可变阻抗控制的合适参数。考虑到从人类示范获得的合规性概况,给出了VIC的线性参数变化(LPV),它允许陈述设计问题,包括稳定性和性能约束为线性矩阵不平等(LMIS)。因此,使用解决方案搜索方法,我们根据用户偏好在任务行为上找到最佳解决方案。通过比较获得的控制器的执行与在二维轨迹跟踪任务中不同用户首选项集的设计的解决方案来验证设计问题。将滑轮循环任务作为案例研究提出,以评估可变阻抗控制器的性能,并使用用户偏好机制对恒定的稳定性控制器进行恒定的敏捷性和倾斜度。所有实验均使用7-DOF Kinova Gen3操纵器进行。
translated by 谷歌翻译
静止状态fMRI是一种成像方式,它通过信号变化揭示了大脑活动的定位,这就是所谓的静息状态网络(RSN)。该技术正在在神经外科预制范围内广受欢迎,以可视化功能区域并评估区域活动。 RS-FMRI网络的标签需要主题的专业知识并且耗时,因此需要自动分类算法。尽管AI在医学诊断中的影响表现出了很大的进步。在临床环境中部署和维护它们是未满足的需求。我们提出了一条端到端可重复的管道,该管道将RS-FMRI的图像处理结合在基于云的工作流程中,同时使用深度学习来自动化RSN的分类。我们已经构建了可重现的Azure机器学习基于云的医学成像概念管道,用于fMRI分析,集成了流行的FMRIB软件库(FSL)工具包。为了证明使用大型数据集的临床应用,我们比较了三个神经网络体系结构,以分类从处理后的RS-FMRI中得出的更深型RSN。这三种算法是:MLP,基于2D投影的CNN和一个完全3D CNN分类网络。每种网络都在RS-FMRI背面项目的独立组件上训练,每种分类方法的精度> 98%。
translated by 谷歌翻译
自我定位是一种基本功能,移动机器人导航系统集成到使用地图从一个点转移到另一点。因此,任何提高本地化精度的增强对于执行精致的灵活性任务至关重要。本文描述了一个新的位置,该位置使用Monte Carlo定位(MCL)算法维护几个颗粒人群,始终选择最佳的粒子作为系统的输出。作为新颖性,我们的工作包括一种多尺度匹配匹配算法,以创建新的MCL群体和一个确定最可靠的指标。它还贡献了最新的实现,从错误的估计或未知的初始位置增加了恢复时间。在与NAV2完全集成的模块中评估了所提出的方法,并与当前的最新自适应ACML溶液进行了比较,从而获得了良好的精度和恢复时间。
translated by 谷歌翻译
我们研究在线学习问题,决策者必须采取一系列决策,但要受到$ M $长期约束。决策者的目标是最大程度地提高其总奖励,同时达到小累积约束,在$ t $回合中违规。我们介绍了此一般类问题的第一个最佳世界类型算法,在根据未知随机模型选择奖励和约束的情况下,无需保证,在它们的情况下,在他们的情况下选择了奖励和约束。在每个回合中由对手选择。我们的算法是关于满足长期约束的最佳固定策略的第一个在对抗环境中提供保证的算法。特别是,它保证了$ \ rho/(1+ \ rho)$的最佳奖励和额定性遗憾,其中$ \ rho $是与严格可行的解决方案有关的可行性参数。我们的框架采用传统的遗憾最小化器作为黑盒组件。因此,通过使用适当的遗憾最小化器进行实例化,它可以处理全反馈以及强盗反馈设置。此外,它允许决策者通过非凸奖励和约束无缝处理场景。我们展示了如何在重复拍卖的预算管理机制的背景下应用我们的框架,以保证不包装的长期约束(例如,ROI约束)。
translated by 谷歌翻译
嗜睡是驾驶员和交通事故主要原因之一的主要关注点。认知神经科学和计算机科学的进步已通过使用脑部计算机界面(BCIS)和机器学习(ML)来检测驾驶员的嗜睡。然而,几个挑战仍然开放,应该面对。首先,文献中缺少使用一组ML算法的多种ML算法对嗜睡检测性能的全面评估。最后,需要研究适合受试者组的可扩展ML模型的检测性能,并将其与文献中提出的单个模型进行比较。为了改善这些局限性,这项工作提出了一个智能框架,该框架采用了BCIS和基于脑电图(EEG)的功能,以检测驾驶场景中的嗜睡。 SEED-VIG数据集用于喂食不同的ML回归器和三类分类器,然后评估,分析和比较单个受试者和组的表现最佳模型。有关单个模型的更多详细信息,随机森林(RF)获得了78%的F1分数,改善了通过文献中使用的模型(例如支持向量机(SVM))获得的58%。关于可扩展模型,RF达到了79%的F1得分,证明了这些方法的有效性。所学的经验教训可以总结如下:i)不仅SVM,而且文献中未充分探索的其他模型与嗜睡检测有关,ii)ii)适用于受试者组的可伸缩方法也有效地检测嗜睡,即使新受试者也是如此评估模型培训中未包括的。
translated by 谷歌翻译
我们研究了一个知情的发件人面临的重复信息设计问题,该问题试图影响自我利益接收者的行为。我们考虑接收器面临顺序决策(SDM)问题的设置。在每回合中,发件人都会观察SDM问题中随机事件的实现。这会面临如何逐步向接收者披露此类信息以说服他们遵循(理想的)行动建议的挑战。我们研究了发件人不知道随机事件概率的情况,因此,他们必须在说服接收器的同时逐渐学习它们。首先,我们提供了发件人说服力信息结构集的非平凡的多面近似。这对于设计有效的学习算法至关重要。接下来,我们证明了一个负面的结果:没有学习算法可以说服力。因此,我们通过关注算法来保证接收者对以下建议的遗憾会增长,从而放松说服力。在全反馈设置(发件人观察所有随机事件实现)中,我们提供了一种算法,其中包括$ \ tilde {o}(\ sqrt {t})$ sexter和接收者遗憾。取而代之的是,在Bandit反馈设置中 - 发件人仅观察SDM问题中实际发生的随机事件的实现 - 我们设计了一种算法,给定一个$ \ alpha \ in [1/2,1] $作为输入,确保$ \ tilde {o}({t^\ alpha})$和$ \ tilde {o}(t^{\ max \ arpha,1- \ frac {\ frac {\ alpha} })$遗憾,分别为发件人和接收器。该结果补充了下限,表明这种遗憾的权衡本质上是紧张的。
translated by 谷歌翻译
自动评估学习者能力是智能辅导系统中的一项基本任务。评估专栏通常有效地描述了相关能力和能力水平。本文介绍了一种直接从评估标题定义某些(部分)能力级别的评估标题中得出学习者模型的方法。该模型基于贝叶斯网络,并以不确定性(通常称为嘈杂的门)利用逻辑门来减少模型的参数数量,因此,以简化专家的启发并允许对智能辅导系统的实时推断。我们说明了如何应用该方法来自动对用于测试计算思维技能的活动的人类评估。从评估主题开始的模型的简单启发打开了快速自动化几个任务的自动化的可能性,从而使它们在自适应评估工具和智能辅导系统的背景下更容易利用。
translated by 谷歌翻译
工业X射线分析在需要保证某些零件的结构完整性的航空航天,汽车或核行业中很常见。但是,射线照相图像的解释有时很困难,可能导致两名专家在缺陷分类上不同意。本文介绍的自动缺陷识别(ADR)系统将减少分析时间,还将有助于减少对缺陷的主观解释,同时提高人类检查员的可靠性。我们的卷积神经网络(CNN)模型达到94.2 \%准确性(MAP@iou = 50 \%),当应用于汽车铝铸件数据集(GDXRAR)时,它被认为与预期的人类性能相似,超过了当前状态该数据集的艺术。在工业环境上,其推理时间少于每个DICOM图像,因此可以安装在生产设施上,不会影响交付时间。此外,还进行了对主要高参数的消融研究,以优化从75 \%映射的初始基线结果最高94.2 \%map的模型准确性。
translated by 谷歌翻译