TorchXrayVision是一个开源软件库,用于使用胸部X射线数据集和深度学习模型。它为广泛的公共可公共胸部X射线数据集提供了一个通用的接口和通用预处理链。此外,通过库培训具有不同架构的许多分类和表示模型,通过库可获得不同的数据组合,以用作基线或特征提取器。
translated by 谷歌翻译
医疗AI通过支持基于证据的医学实践,个性化患者治疗,降低成本以及改善提供者和患者体验,推进医疗保健的巨大潜力。我们认为解锁此潜力需要一种系统的方法来衡量在大规模异构数据上的医疗AI模型的性能。为了满足这种需求,我们正在建立Medperf,这是一个开放的框架,用于在医疗领域的基准测试机器学习。 Medperf将使联合评估能够将模型安全地分配给不同的评估设施,从而赋予医疗组织在高效和人类监督过程中评估和验证AI模型的性能,同时优先考虑隐私。我们描述了当前的挑战医疗保健和AI社区面临,需要开放平台,Medperf的设计理念,其目前的实施状态和我们的路线图。我们呼吁研究人员和组织加入我们创建Medperf开放基准平台。
translated by 谷歌翻译
无监督的域适应性(DA)中的主要挑战是减轻源域和目标域之间的域移动。先前的DA工作表明,可以使用借口任务来通过学习域不变表示来减轻此域的转移。但是,实际上,我们发现大多数现有的借口任务对其他已建立的技术无效。因此,我们从理论上分析了如何以及何时可以利用子公司借口任务来协助给定DA问题的目标任务并制定客观的子公司任务适用性标准。基于此标准,我们设计了一个新颖的贴纸干预过程和铸造贴纸分类的过程,作为监督的子公司DA问题,该问题与目标任务无监督的DA同时发生。我们的方法不仅改善了目标任务适应性能,而且还促进了面向隐私的无源DA,即没有并发源目标访问。标准Office-31,Office-Home,Domainnet和Visda基准的实验证明了我们对单源和多源无源DA的优势。我们的方法还补充了现有的无源作品,从而实现了领先的绩效。
translated by 谷歌翻译
两轮自动平衡机器人是逆摆的一个示例,是一种固有的非线性,不稳定的系统。提出的框架“主持人”的基本概念是克服通过提供强大的控制机制,比例积分衍生物(PID)和强化学习(RL)来克服最初不稳定系统的挑战。此外,雌激素中的微控制器Nodemcuesp32和惯性传感器采用较少的计算过程,以提供有关车轮旋转到电动机驱动器的准确指导,这有助于控制车轮并平衡机器人。该框架还包括PID控制器的数学模型和新型的自训练的Actor-Critic-Critic算法作为RL药物。经过多次实验,对控制可变校准作为基准值,以达到静态平衡的角度。这个“主流”框架提出了PID和RL辅助功能原型和模拟,以更好地实用。
translated by 谷歌翻译
一个沿着城市街道行走的人试图对世界各个方面进行建模,这很快就会被许多商店,汽车和人们遵循自己的复杂且难以理解的动态所淹没。在这种环境中的探索和导航是一项日常任务,不需要大量精神资源。是否可以将这种感官信息的消防软管转变为最小的潜在状态,这是代理在世界上成功采取行动的必要和足够的?我们具体地提出了这个问题,并提出了可控制的状态发现算法(AC-State),该算法具有理论保证,并且实际上被证明可以发现\ textit {最小可控的潜在状态},其中包含所有用于控制控制的信息代理,同时完全丢弃所有无关的信息。该算法由一个具有信息瓶颈的多步逆模型(预测遥远观察结果的动作)组成。 AC-State可以在没有奖励或示威的情况下实现本地化,探索和导航。我们证明了在三个领域中发现可控潜在状态的发现:将机器人组分散注意力(例如,照明条件和背景变化),与其他代理商一起在迷宫中进行探索,并在Matterport House Simulator中导航。
translated by 谷歌翻译
数据驱动的设计显示了加速材料发现的希望,但由于搜索化学,结构和合成方法的庞大设计空间的高昂成本,这是具有挑战性的。贝叶斯优化(BO)采用不确定性的机器学习模型来选择有前途的设计来评估,从而降低成本。但是,在材料设计中特别感兴趣的具有混合数值和分类变量的BO尚未得到很好的研究。在这项工作中,我们调查了使用混合变量对机器学习的不确定性量化的常见主义者和贝叶斯方法。然后,我们使用来自每个组的流行代表模型,基于森林的LOLO模型(频繁主义者)和潜在的可变高斯过程模型(贝叶斯)进行了对BO中其表现的系统比较研究。我们研究了这两个模型在数学函数优化的功效以及结构和功能材料的特性,在其中我们观察到与问题维度和复杂性有关的性能差异。通过研究机器学习模型的预测性和不确定性估计功能,我们可以解释观察到的性能差异。我们的结果为在材料设计中的混合变量BO中选择频繁和贝叶斯不确定性的机器学习模型提供了实用的指导。
translated by 谷歌翻译
极端分类(XC)试图用最大的标签集中标记标签的子集标记数据点。通过使用稀疏,手工制作的功能的XC方法优越,用密集,学习的数据来进行深度XC,以数据点和标签的形式吸引了很多关注。负挖掘技术已成为所有深XC方法的关键组成部分,使它们可以扩展到数百万个标签。然而,尽管最近进步,但培训具有大型编码器体系结构(例如变形金刚)的深入XC模型仍然具有挑战性。本文确定,流行负面挖掘技术的内存通常迫使小型批量尺寸保持小且缓慢的训练。作为回应,本文介绍了Ngame,这是一种轻巧的迷你批次创建技术,可证明可证明准确的内部负面样品。这使得与现有负面采样技术相比,具有更大的迷你批次培训,提供更快的收敛性和更高的精度。发现Ngame的准确性比各种基准数据集的最先进方法要高16%,以进行极端分类,并且在回答搜索引擎查询以响应用户网页时检索搜索引擎查询更准确3%显示个性化广告。在流行搜索引擎的实时A/B测试中,Ngame在点击率率中的收益最高可达23%。
translated by 谷歌翻译
域的概括(DG)旨在学习通过使用来自多个相关源域的数据,其在测试时间遇到的看不见的域的性能保持较高的模型。许多现有的DG算法降低了表示空间中源分布之间的差异,从而有可能使靠近来源的看不见的域对齐。这是由分析的动机,该分析解释了使用分布距离(例如Wasserstein距离)与来源的分布距离(例如Wasserstein距离)的概括。但是,由于DG目标的开放性,使用一些基准数据集对DG算法进行全面评估是一项挑战。特别是,我们证明了用DG方法训练的模型的准确性在未见的域中,从流行的基准数据集生成的未见域有很大差异。这强调了DG方法在一些基准数据集上的性能可能无法代表其在野外看不见的域上的性能。为了克服这一障碍,我们提出了一个基于分配强大优化(DRO)的通用认证框架,该框架可以有效地证明任何DG方法的最差性能。这使DG方法与基准数据集的经验评估互补的DG方法无关。此外,我们提出了一种培训算法,可以与任何DG方法一起使用,以改善其认证性能。我们的经验评估证明了我们方法在显着改善最严重的损失(即降低野生模型失败的风险)方面的有效性,而不会在基准数据集上产生显着的性能下降。
translated by 谷歌翻译
我们在一般的非线性函数近似下研究无奖励增强学习(RL),并在各种标准结构假设下建立样品效率和硬度结果。从积极的一面来看,我们提出了在最小的结构假设下进行样品有效奖励探索的Rfolive(无奖励橄榄)算法,该假设涵盖了先前研究的线性MDPS的设置(Jin等,2020b),线性完整性(线性完整性)( Zanette等人,2020b)和低级MDP,具有未知的表示(Modi等,2021)。我们的分析表明,以前针对后两个设置的易学性或可及性假设在统计上对于无奖励探索而言并不是必需的。在负面方面,我们为在线性完整性假设下的无奖励和奖励意识探索提供统计硬度结果时,当基础特征未知时,显示了低级别和线性完整性设置之间的指数分离。
translated by 谷歌翻译
由于温室环境中的较高变化和遮挡,机器人对番茄植物的视觉重建非常具有挑战性。 Active-Vision的范式通过推理先前获取的信息并系统地计划相机观点来收集有关植物的新信息,从而有助于克服这些挑战。但是,现有的主动视觉算法不能在有针对性的感知目标(例如叶子节点的3D重建)上表现良好,因为它们不能区分需要重建的植物零件和植物的其余部分。在本文中,我们提出了一种注意力驱动的主动视觉算法,该算法仅根据任务进行任务,仅考虑相关的植物零件。在模拟环境中评估了所提出的方法,该方法是针对番茄植物3D重建的任务,即各种关注水平,即整个植物,主茎和叶子节点。与预定义和随机方法相比,我们的方法将3D重建的准确性提高了9.7%和5.3%的整个植物的准确性,主茎的准确性为14.2%和7.9%,叶子源分别为25.9%和17.3%。前3个观点。同样,与预定义和随机方法相比,我们的方法重建了整个植物的80%和主茎,在1个较少的角度和80%的叶子节点中重建了3个较小的观点。我们还证明,尽管植物模型发生了变化,遮挡量,候选观点的数量和重建决议,但注意力驱动的NBV规划师仍有效地工作。通过在活动视觉上添加注意力机制,可以有效地重建整个植物和靶向植物部分。我们得出的结论是,有必要的注意机制对于显着提高复杂农业食品环境中的感知质量是必要的。
translated by 谷歌翻译