Image captioning models require the high-level generalization ability to describe the contents of various images in words. Most existing approaches treat the image-caption pairs equally in their training without considering the differences in their learning difficulties. Several image captioning approaches introduce curriculum learning methods that present training data with increasing levels of difficulty. However, their difficulty measurements are either based on domain-specific features or prior model training. In this paper, we propose a simple yet efficient difficulty measurement for image captioning using cross-modal similarity calculated by a pretrained vision-language model. Experiments on the COCO and Flickr30k datasets show that our proposed approach achieves superior performance and competitive convergence speed to baselines without requiring heuristics or incurring additional training costs. Moreover, the higher model performance on difficult examples and unseen data also demonstrates the generalization ability.
translated by 谷歌翻译
Question answering (QA) models for reading comprehension tend to learn shortcut solutions rather than the solutions intended by QA datasets. QA models that have learned shortcut solutions can achieve human-level performance in shortcut examples where shortcuts are valid, but these same behaviors degrade generalization potential on anti-shortcut examples where shortcuts are invalid. Various methods have been proposed to mitigate this problem, but they do not fully take the characteristics of shortcuts themselves into account. We assume that the learnability of shortcuts, i.e., how easy it is to learn a shortcut, is useful to mitigate the problem. Thus, we first examine the learnability of the representative shortcuts on extractive and multiple-choice QA datasets. Behavioral tests using biased training sets reveal that shortcuts that exploit answer positions and word-label correlations are preferentially learned for extractive and multiple-choice QA, respectively. We find that the more learnable a shortcut is, the flatter and deeper the loss landscape is around the shortcut solution in the parameter space. We also find that the availability of the preferred shortcuts tends to make the task easier to perform from an information-theoretic viewpoint. Lastly, we experimentally show that the learnability of shortcuts can be utilized to construct an effective QA training set; the more learnable a shortcut is, the smaller the proportion of anti-shortcut examples required to achieve comparable performance on shortcut and anti-shortcut examples. We claim that the learnability of shortcuts should be considered when designing mitigation methods.
translated by 谷歌翻译
Question answering (QA) models are shown to be insensitive to large perturbations to inputs; that is, they make correct and confident predictions even when given largely perturbed inputs from which humans can not correctly derive answers. In addition, QA models fail to generalize to other domains and adversarial test sets, while humans maintain high accuracy. Based on these observations, we assume that QA models do not use intended features necessary for human reading but rely on spurious features, causing the lack of generalization ability. Therefore, we attempt to answer the question: If the overconfident predictions of QA models for various types of perturbations are penalized, will the out-of-distribution (OOD) generalization be improved? To prevent models from making confident predictions on perturbed inputs, we first follow existing studies and maximize the entropy of the output probability for perturbed inputs. However, we find that QA models trained to be sensitive to a certain perturbation type are often insensitive to unseen types of perturbations. Thus, we simultaneously maximize the entropy for the four perturbation types (i.e., word- and sentence-level shuffling and deletion) to further close the gap between models and humans. Contrary to our expectations, although models become sensitive to the four types of perturbations, we find that the OOD generalization is not improved. Moreover, the OOD generalization is sometimes degraded after entropy maximization. Making unconfident predictions on largely perturbed inputs per se may be beneficial to gaining human trust. However, our negative results suggest that researchers should pay attention to the side effect of entropy maximization.
translated by 谷歌翻译
Small to medium-scale data science experiments often rely on research software developed ad-hoc by individual scientists or small teams. Often there is no time to make the research software fast, reusable, and open access. The consequence is twofold. First, subsequent researchers must spend significant work hours building upon the proposed hypotheses or experimental framework. In the worst case, others cannot reproduce the experiment and reuse the findings for subsequent research. Second, suppose the ad-hoc research software fails during often long-running computationally expensive experiments. In that case, the overall effort to iteratively improve the software and rerun the experiments creates significant time pressure on the researchers. We suggest making caching an integral part of the research software development process, even before the first line of code is written. This article outlines caching recommendations for developing research software in data science projects. Our recommendations provide a perspective to circumvent common problems such as propriety dependence, speed, etc. At the same time, caching contributes to the reproducibility of experiments in the open science workflow. Concerning the four guiding principles, i.e., Findability, Accessibility, Interoperability, and Reusability (FAIR), we foresee that including the proposed recommendation in a research software development will make the data related to that software FAIRer for both machines and humans. We exhibit the usefulness of some of the proposed recommendations on our recently completed research software project in mathematical information retrieval.
translated by 谷歌翻译
Media has a substantial impact on the public perception of events. A one-sided or polarizing perspective on any topic is usually described as media bias. One of the ways how bias in news articles can be introduced is by altering word choice. Biased word choices are not always obvious, nor do they exhibit high context-dependency. Hence, detecting bias is often difficult. We propose a Transformer-based deep learning architecture trained via Multi-Task Learning using six bias-related data sets to tackle the media bias detection problem. Our best-performing implementation achieves a macro $F_{1}$ of 0.776, a performance boost of 3\% compared to our baseline, outperforming existing methods. Our results indicate Multi-Task Learning as a promising alternative to improve existing baseline models in identifying slanted reporting.
translated by 谷歌翻译
媒体报道对公众对事件的看法具有重大影响。尽管如此,媒体媒体经常有偏见。偏见新闻文章的一种方法是改变选择一词。通过单词选择对偏见的自动识别是具有挑战性的,这主要是由于缺乏黄金标准数据集和高环境依赖性。本文介绍了Babe,这是由训练有素的专家创建的强大而多样化的数据集,用于媒体偏见研究。我们还分析了为什么专家标签在该域中至关重要。与现有工作相比,我们的数据集提供了更好的注释质量和更高的通知者协议。它由主题和插座之间平衡的3,700个句子组成,其中包含单词和句子级别上的媒体偏见标签。基于我们的数据,我们还引入了一种自动检测新闻文章中偏见的句子的方法。我们最佳性能基于BERT的模型是在由遥远标签组成的较大语料库中进行预训练的。对我们提出的监督数据集进行微调和评估模型,我们达到了0.804的宏F1得分,表现优于现有方法。
translated by 谷歌翻译
快捷方式学习的问题在NLP中广为人知,并且近年来一直是重要的研究重点。数据中的意外相关性使模型能够轻松地求解旨在表现出高级语言理解和推理能力的任务。在本调查论文中,我们关注机器阅读理解的领域(MRC),这是展示高级语言理解的重要任务,这也遭受了一系列快捷方式。我们总结了用于测量和减轻快捷方式的可用技术,并以捷径研究进一步进展的建议结论。最重要的是,我们强调了MRC中缓解快捷方式的两个主要问题:缺乏公共挑战集,有效和可重复使用的评估的必要组成部分以及在其他领域中缺乏某些缓解技术。
translated by 谷歌翻译
语言模型偏见已成为NLP社区的重要研究领域。提出了许多偏见技术,但偏见消融仍然是一个未解决的问题。我们展示了一个新颖的框架,用于通过运动修剪来检查预训练的基于变压器的语言模型的偏见。给定模型和一个偏见的目标,我们的框架找到了与原始模型相比,偏差少的模型子集。我们通过对模型进行修剪来实现我们的框架,同时将其按照歧义目标进行微调。优化仅是修剪分数 - 参数以及模型的权重,该参数充当门。我们尝试修剪注意力头,这是变形金刚的重要组成部分:我们修剪正方形块,并建立了一种修剪整个头部的新方法。最后,我们使用性别偏见证明了我们的框架的用法,并且根据我们的发现,我们提出了对现有辩论方法的改进。此外,我们重新发现了偏见 - 绩效权衡:模型执行越好,其包含的偏见就越多。
translated by 谷歌翻译
Natural Language Understanding has seen an increasing number of publications in the last few years, especially after robust word embeddings models became prominent, when they proved themselves able to capture and represent semantic relationships from massive amounts of data. Nevertheless, traditional models often fall short in intrinsic issues of linguistics, such as polysemy and homonymy. Any expert system that makes use of natural language in its core, can be affected by a weak semantic representation of text, resulting in inaccurate outcomes based on poor decisions. To mitigate such issues, we propose a novel approach called Most Suitable Sense Annotation (MSSA), that disambiguates and annotates each word by its specific sense, considering the semantic effects of its context. Our approach brings three main contributions to the semantic representation scenario: (i) an unsupervised technique that disambiguates and annotates words by their senses, (ii) a multi-sense embeddings model that can be extended to any traditional word embeddings algorithm, and (iii) a recurrent methodology that allows our models to be re-used and their representations refined. We test our approach on six different benchmarks for the word similarity task, showing that our approach can produce state-of-the-art results and outperforms several more complex state-of-the-art systems.
translated by 谷歌翻译
In recent years, the performance of novel view synthesis using perspective images has dramatically improved with the advent of neural radiance fields (NeRF). This study proposes two novel techniques that effectively build NeRF for 360{\textdegree} omnidirectional images. Due to the characteristics of a 360{\textdegree} image of ERP format that has spatial distortion in their high latitude regions and a 360{\textdegree} wide viewing angle, NeRF's general ray sampling strategy is ineffective. Hence, the view synthesis accuracy of NeRF is limited and learning is not efficient. We propose two non-uniform ray sampling schemes for NeRF to suit 360{\textdegree} images - distortion-aware ray sampling and content-aware ray sampling. We created an evaluation dataset Synth360 using Replica and SceneCity models of indoor and outdoor scenes, respectively. In experiments, we show that our proposal successfully builds 360{\textdegree} image NeRF in terms of both accuracy and efficiency. The proposal is widely applicable to advanced variants of NeRF. DietNeRF, AugNeRF, and NeRF++ combined with the proposed techniques further improve the performance. Moreover, we show that our proposed method enhances the quality of real-world scenes in 360{\textdegree} images. Synth360: https://drive.google.com/drive/folders/1suL9B7DO2no21ggiIHkH3JF3OecasQLb.
translated by 谷歌翻译