异常模式检测旨在识别与正常偏差明显的情况,并且广泛适用于域。在现有技术中提出了多种异常的检测技术。但是,有一个常见的原则和可扩展的特征选择方法,以便有效发现。通常通过优化预测结果的性能而不是与预期的系统偏差来实现现有的特征选择技术。在本文中,我们提出了一种基于稀疏的自动特征选择(SAFS)框架,其通过特征驱动的大量比率的稀疏性编码系统的结果偏差。 SAF是一种模型 - 无可争议的方法,具有不同发现技术的可用性。 SAF在可在公开的关键护理数据集上验证时维持检测性能超过3倍,计算时间超过3美元。与特征选择的多个基线相比,SAF也会导致卓越的性能。
translated by 谷歌翻译
使用多种最先进的特征选择技术开发了自动特征选择管道,以选择用于区分护理模式(DPOC)的最佳功能。管道包括三种类型的特征选择技术;过滤器,包装器和嵌入式方法选择顶部K功能。使用具有二进制依赖变量的五种不同的数据集,选择了它们的不同顶部K最佳功能。在现有的多维子集扫描(MDS)中测试了所选特征,其中记录了最异常的亚步骤,大多数异常子集,倾向分数和测量的效果以测试它们的性能。将这种性能与在MDSS管道中数据集中的所有协变量中获得的四个类似的指标进行了比较。我们发现,尽管使用了不同的特征选择技术,但数据分布是在确定要使用的技术时注意的键。
translated by 谷歌翻译
电离层中存在的电子密度不规则性会引起全球导航卫星系统(GNSS)信号的显着波动。信号功率的波动称为振幅闪烁,可以通过S4指数进行监测。当实时数据不可用时,基于历史S4索引数据的幅度闪烁的严重程度是有益的。在这项工作中,我们研究了使用单个GPS闪烁监测接收器中使用历史数据来训练机器学习(ML)模型的可能性参数。评估了六种不同的ML型号,其中包装的树模型是其中最准确的,使用平衡数据集获得了预测准确性$ 81 \%$,使用不平衡数据集获得了$ 97 \%$ $。
translated by 谷歌翻译
用于视觉语言表示学习的变压器已经引起了很多兴趣,并在视觉问题答案(VQA)和接地方面表现出了巨大的表现。但是,大多数显示出良好性能的系统在培训过程中仍然依赖于预训练的对象探测器,这将其适用性限制在可用于这些检测器的对象类中。为了减轻这种限制,以下论文着重于在变形金刚中的视觉问题答案的背景下进行弱监督的基础问题。该方法通过将每个视觉令牌分组在视觉编码器中,并使用语言自我发项层作为文本引导选择模块来利用胶囊,以在将它们转发到下一层之前掩盖它们。我们评估了针对挑战的GQA以及VQA帽数据集的VQA接地的方法。我们的实验表明:在从标准变压器体系结构中删除蒙版对象的信息的同时,胶囊的集成显着提高了此类系统的接地能力,并提供了与其他新的最先进的结果。在现场接近。
translated by 谷歌翻译