Automation in farming processes is a growing field of research in both academia and industries. A considerable amount of work has been put into this field to develop systems robust enough for farming. Terrace farming, in particular, provides a varying set of challenges, including robust stair climbing methods and stable navigation in unstructured terrains. We propose the design of a novel autonomous terrace farming robot, Aarohi, that can effectively climb steep terraces of considerable heights and execute several farming operations. The design optimisation strategy for the overall mechanical structure is elucidated. Further, the embedded and software architecture along with fail-safe strategies are presented for a working prototype. Algorithms for autonomous traversal over the terrace steps using the scissor lift mechanism and performing various farming operations have also been discussed. The adaptability of the design to specific operational requirements and modular farm tools allow Aarohi to be customised for a wide variety of use cases.
translated by 谷歌翻译
We investigate how a shepherd should move in order to effectively herd and guide a flock of agents towards a target. Using a detailed agent-based model (ABM) for the members of the flock, we pose and solve an optimization problem for the shepherd that has to simultaneously work to keep the flock cohesive while coercing it towards a prescribed project. We find that three distinct strategies emerge as potential solutions as a function of just two parameters: the ratio of herd size to shepherd repulsion length and the ratio of herd speed to shepherd speed. We term these as: (i) mustering, in which the shepherd circles the herd to ensure compactness, (ii) droving, in which the shepherd chases the herd in a desired direction, and (iii) driving, a hitherto unreported strategy where the flock surrounds a shepherd that drives it from within. A minimal dynamical model for the size, shape and position of the herd captures the effective behavior of the ABM, and further allows us to characterize the different herding strategies in terms of the behavior of the shepherd that librates (mustering), oscillates (droving) or moves steadily (driving). All together, our study yields a simple and intuitive classification of herding strategies that ought to be of general interest in the context of controlling the collective behavior of active matter.
translated by 谷歌翻译
建模是什么使广告有说服力的原因,即引起消费者的所需响应,对于宣传,社会心理学和营销的研究至关重要。尽管其重要性,但计算机视觉中说服力的计算建模仍处于起步阶段,这主要是由于缺乏可以提供与ADS相关的说服力标签的基准数据集。由社会心理学和市场营销中的说服文学的激励,我们引入了广泛的说服策略词汇,并建立了用说服策略注释的第一个AD图像语料库。然后,我们通过多模式学习制定说服策略预测的任务,在该任务中,我们设计了一个多任务注意融合模型,该模型可以利用其他广告理解的任务来预测说服策略。此外,我们对30家财富500家公司的1600个广告活动进行了真实的案例研究,我们使用模型的预测来分析哪些策略与不同的人口统计学(年龄和性别)一起使用。该数据集还提供图像分割掩码,该蒙版在测试拆分上标记了相应的AD图像中的说服力策略。我们公开发布代码和数据集https://midas-research.github.io/persuasion-avertisements/。
translated by 谷歌翻译
语言模型既展示了定量的改进,又展示了新的定性功能,随着规模的增加。尽管它们具有潜在的变革性影响,但这些新能力的特征却很差。为了为未来的研究提供信息,为破坏性的新模型能力做准备,并改善社会有害的效果,至关重要的是,我们必须了解目前和近乎未来的能力和语言模型的局限性。为了应对这一挑战,我们介绍了超越模仿游戏基准(Big Bench)。 Big Bench目前由204个任务组成,由132家机构的442位作者贡献。任务主题是多样的,从语言学,儿童发展,数学,常识性推理,生物学,物理学,社会偏见,软件开发等等。 Big-Bench专注于被认为超出当前语言模型的功能的任务。我们评估了OpenAI的GPT型号,Google内部密集变压器体系结构和大型基础上的开关稀疏变压器的行为,跨越了数百万到数十亿个参数。此外,一个人类专家评估者团队执行了所有任务,以提供强大的基准。研究结果包括:模型性能和校准都随规模改善,但绝对的术语(以及与评估者的性能相比);在模型类中的性能非常相似,尽管带有稀疏性。逐渐和预测的任务通常涉及大量知识或记忆成分,而在临界规模上表现出“突破性”行为的任务通常涉及多个步骤或组成部分或脆性指标;社交偏见通常会随着含糊不清的环境而随着规模而增加,但这可以通过提示来改善。
translated by 谷歌翻译
数据增强是自然语言处理(NLP)模型的鲁棒性评估的重要组成部分,以及增强他们培训的数据的多样性。在本文中,我们呈现NL-Cogmenter,这是一种新的参与式Python的自然语言增强框架,它支持创建两个转换(对数据的修改)和过滤器(根据特定功能的数据拆分)。我们描述了框架和初始的117个变换和23个过滤器,用于各种自然语言任务。我们通过使用其几个转换来分析流行自然语言模型的鲁棒性来证明NL-Upmenter的功效。基础架构,Datacards和稳健性分析结果在NL-Augmenter存储库上公开可用(\ url {https://github.com/gem-benchmark/nl-augmenter})。
translated by 谷歌翻译
通过言语技术的最新进步和智能助理的引入,如亚马逊Alexa,Apple Siri和Google Home,越来越多的用户通过语音命令与各种应用程序进行交互。电子商务公司通常在其网页上显示较短的产品标题,在需要简洁时,可以在其网页上进行人工策划或算法生成。然而,这些标题与自然语言不同。例如,“幸运的魅力面筋无麸质谷物,20.5盎司盒装幸运魅力含有无麸质”可以在网页上显示,而在基于语音的文本到语音应用程序中不能使用类似的标题。在这种对话系统中,易于理解的句子,例如“20.5盎司的幸运魅力麸质谷物”是优选的。与显示设备相比,可以向用户呈现图像和详细的产品信息,在与语音助手相互作用时,需要传达最重要信息的产品的短标题。我们提出Ebert,通过进一步预先训练电子商务产品描述语料库中的BERT嵌入来进行序列到序列方法,然后微调结果模型,以产生来自输入Web标题的短,自然的语言标题。我们对现实世界行业数据集的广泛实验,以及对模型输出的人类评估,表明Ebert摘要优于相当的基线模型。由于该模型的功效,该模型的版本已在真实世界中进行部署。
translated by 谷歌翻译
Covid-19疫苗是我们最好的赌注,用于减轻大流行的持续冲击。但是,疫苗也预计将是有限的资源。最佳分配策略,特别是在具有访问不公平的国家和热点的时间分离,可能是停留疾病传播的有效方式。我们通过提出一种新的管道VACSIM来实现这个问题,将深度加强学习模型延装到用于优化Covid-19疫苗的分布的上下文的匪徒方法中。虽然加强学习模型建议了更好的行动和奖励,但上下文匪徒允许在现实世界场景中每天到日常实施的在线修改。我们评估此框架,防止与印度五个不同状态的Covid-19案例发生比例分配疫苗的天真分配方法(Assam,Delhi,Jharkhand,Maharashtra和Nagaland),并展示高达9039潜力的潜在感染,并增加了显着增加在通过VacSim方法的45天内限制差异的疗效。我们的型号和平台对印度所有国家和潜在的全球范围内都是可扩张的。我们还提出了新的评估策略,包括标准的基于区间模型的预测和对我们模型的因果关系评估。由于所有模型都携带可能需要在各种情况下进行测试的假设,因此我们开源我们的模型Vackim并贡献了与Openai健身房兼容的新型加固学习环境,以使其在全球的现实世界应用中可扩展。 (http://vacsim.tavlab.iiitd.edu.in:8000/)。
translated by 谷歌翻译
Existing federated classification algorithms typically assume the local annotations at every client cover the same set of classes. In this paper, we aim to lift such an assumption and focus on a more general yet practical non-IID setting where every client can work on non-identical and even disjoint sets of classes (i.e., client-exclusive classes), and the clients have a common goal which is to build a global classification model to identify the union of these classes. Such heterogeneity in client class sets poses a new challenge: how to ensure different clients are operating in the same latent space so as to avoid the drift after aggregation? We observe that the classes can be described in natural languages (i.e., class names) and these names are typically safe to share with all parties. Thus, we formulate the classification problem as a matching process between data representations and class representations and break the classification model into a data encoder and a label encoder. We leverage the natural-language class names as the common ground to anchor the class representations in the label encoder. In each iteration, the label encoder updates the class representations and regulates the data representations through matching. We further use the updated class representations at each round to annotate data samples for locally-unaware classes according to similarity and distill knowledge to local models. Extensive experiments on four real-world datasets show that the proposed method can outperform various classical and state-of-the-art federated learning methods designed for learning with non-IID data.
translated by 谷歌翻译
The rise in data has led to the need for dimension reduction techniques, especially in the area of non-scalar variables, including time series, natural language processing, and computer vision. In this paper, we specifically investigate dimension reduction for time series through functional data analysis. Current methods for dimension reduction in functional data are functional principal component analysis and functional autoencoders, which are limited to linear mappings or scalar representations for the time series, which is inefficient. In real data applications, the nature of the data is much more complex. We propose a non-linear function-on-function approach, which consists of a functional encoder and a functional decoder, that uses continuous hidden layers consisting of continuous neurons to learn the structure inherent in functional data, which addresses the aforementioned concerns in the existing approaches. Our approach gives a low dimension latent representation by reducing the number of functional features as well as the timepoints at which the functions are observed. The effectiveness of the proposed model is demonstrated through multiple simulations and real data examples.
translated by 谷歌翻译
Landing an unmanned aerial vehicle unmanned aerial vehicle (UAV) on top of an unmanned surface vehicle (USV) in harsh open waters is a challenging problem, owing to forces that can damage the UAV due to a severe roll and/or pitch angle of the USV during touchdown. To tackle this, we propose a novel model predictive control (MPC) approach enabling a UAV to land autonomously on a USV in these harsh conditions. The MPC employs a novel objective function and an online decomposition of the oscillatory motion of the vessel to predict, attempt, and accomplish the landing during near-zero tilt of the landing platform. The nonlinear prediction of the motion of the vessel is performed using visual data from an onboard camera. Therefore, the system does not require any communication with the USV or a control station. The proposed method was analyzed in numerous robotics simulations in harsh and extreme conditions and further validated in various real-world scenarios.
translated by 谷歌翻译