建模是什么使广告有说服力的原因,即引起消费者的所需响应,对于宣传,社会心理学和营销的研究至关重要。尽管其重要性,但计算机视觉中说服力的计算建模仍处于起步阶段,这主要是由于缺乏可以提供与ADS相关的说服力标签的基准数据集。由社会心理学和市场营销中的说服文学的激励,我们引入了广泛的说服策略词汇,并建立了用说服策略注释的第一个AD图像语料库。然后,我们通过多模式学习制定说服策略预测的任务,在该任务中,我们设计了一个多任务注意融合模型,该模型可以利用其他广告理解的任务来预测说服策略。此外,我们对30家财富500家公司的1600个广告活动进行了真实的案例研究,我们使用模型的预测来分析哪些策略与不同的人口统计学(年龄和性别)一起使用。该数据集还提供图像分割掩码,该蒙版在测试拆分上标记了相应的AD图像中的说服力策略。我们公开发布代码和数据集https://midas-research.github.io/persuasion-avertisements/。
translated by 谷歌翻译
折射率是最常见的眼睛障碍,是可更正视觉障碍的关键原因,造成了美国近80%的视觉障碍。可以使用多种方法诊断折射误差,包括主观折射,视网膜镜检查和自动磨蚀器。尽管主观折射是黄金标准,但它需要患者的合作,因此不适合婴儿,幼儿和发育迟缓的成年人。视网膜镜检查是一种客观折射方法,不需要患者的任何输入。但是,视网膜镜检查需要镜头套件和训练有素的检查员,这限制了其用于大规模筛查的使用。在这项工作中,我们通过将智能手机连接到视网膜镜和录制视网膜镜视频与患者戴着定制的纸框架来自动化自动化。我们开发了一个视频处理管道,该管道将视网膜视频视为输入,并根据我们提出的视网膜镜检查数学模型的扩展来估算净屈光度错误。我们的系统减轻了对镜头套件的需求,可以由未经培训的检查员进行。在一项185只眼睛的临床试验中,我们的灵敏度为91.0%,特异性为74.0%。此外,与主观折射测量相比,我们方法的平均绝对误差为0.75 $ \ pm $ 0.67D。我们的结果表明,我们的方法有可能用作现实世界中医疗设置中的基于视网膜镜检查的折射率筛选工具。
translated by 谷歌翻译
图形神经网络(GNNS)是一种用于建模图形结构化数据的流行技术,该数据通过来自每个节点的本地邻域的信息聚合来计算节点级表示的结构。然而,该聚合意味着增加敏感信息的风险,因为节点可以参与多个节点的推断。这意味着标准隐私保存机器学习技术,例如差异私有随机梯度下降(DP-SGD) - 这被设计用于每个数据点仅参与推理的一个点的情况 - 要么不适用,或导致不准确解决方案。在这项工作中,我们正式定义了使用节点级别隐私学习1层GNN的问题,并提供具有强大差异隐私保证的算法解决方案。即使每个节点都可以参与多个节点的推断,通过采用仔细的敏感性分析和逐个放大技术的非琐碎扩展,我们的方法能够提供具有实心隐私参数的准确解决方案。标准基准测试的实证评估表明,我们的方法确实能够学习准确的隐私保留GNN,同时仍然优于完全忽略图形信息的标准非私有方法。
translated by 谷歌翻译
Learning rich skills through temporal abstractions without supervision of external rewards is at the frontier of Reinforcement Learning research. Existing works mainly fall into two distinctive categories: variational and Laplacian-based option discovery. The former maximizes the diversity of the discovered options through a mutual information loss but overlooks coverage of the state space, while the latter focuses on improving the coverage of options by increasing connectivity during exploration, but does not consider diversity. In this paper, we propose a unified framework that quantifies diversity and coverage through a novel use of the Determinantal Point Process (DPP) and enables unsupervised option discovery explicitly optimizing both objectives. Specifically, we define the DPP kernel matrix with the Laplacian spectrum of the state transition graph and use the expected mode number in the trajectories as the objective to capture and enhance both diversity and coverage of the learned options. The proposed option discovery algorithm is extensively evaluated using challenging tasks built with Mujoco and Atari, demonstrating that our proposed algorithm substantially outperforms SOTA baselines from both diversity- and coverage-driven categories. The codes are available at https://github.com/LucasCJYSDL/ODPP.
translated by 谷歌翻译
Object-goal navigation (Object-nav) entails searching, recognizing and navigating to a target object. Object-nav has been extensively studied by the Embodied-AI community, but most solutions are often restricted to considering static objects (e.g., television, fridge, etc.). We propose a modular framework for object-nav that is able to efficiently search indoor environments for not just static objects but also movable objects (e.g. fruits, glasses, phones, etc.) that frequently change their positions due to human intervention. Our contextual-bandit agent efficiently explores the environment by showing optimism in the face of uncertainty and learns a model of the likelihood of spotting different objects from each navigable location. The likelihoods are used as rewards in a weighted minimum latency solver to deduce a trajectory for the robot. We evaluate our algorithms in two simulated environments and a real-world setting, to demonstrate high sample efficiency and reliability.
translated by 谷歌翻译
We are interested in neurosymbolic systems consisting of a high-level symbolic layer for explainable prediction in terms of human-intelligible concepts; and a low-level neural layer for extracting symbols required to generate the symbolic explanation. Real data is often imperfect meaning that even if the symbolic theory remains unchanged, we may still need to address the problem of mapping raw data to high-level symbols, each time there is a change in the data acquisition environment or equipment. Manual (re-)annotation of the raw data each time this happens is laborious and expensive; and automated labelling methods are often imperfect, especially for complex problems. NEUROLOG proposed the use of a semantic loss function that allows an existing feature-based symbolic model to guide the extraction of feature-values from raw data, using `abduction'. However, the experiments demonstrating the use of semantic loss through abduction appear to rely heavily on a domain-specific pre-processing step that enables a prior delineation of feature locations in the raw data. We examine the use of semantic loss in domains where such pre-processing is not possible, or is not obvious. We show that without any prior information about the features, the NEUROLOG approach can continue to predict accurately even with substantially incorrect feature predictions. We show also that prior information about the features in the form of even imperfect pre-training can help correct this situation. These findings are replicated on the original problem considered by NEUROLOG, without the use of feature-delineation. This suggests that symbolic explanations constructed for data in a domain could be re-used in a related domain, by `feature-adaptation' of pre-trained neural extractors using the semantic loss function constrained by abductive feedback.
translated by 谷歌翻译
Contrails, short for condensation trails, are line-shaped ice clouds produced by aircraft engine exhaust when they fly through cold and humid air. They generate a greenhouse effect by absorbing or directing back to Earth approximately 33% of emitted outgoing longwave radiation. They account for over half of the climate change resulting from aviation activities. Avoiding contrails and adjusting flight routes could be an inexpensive and effective way to reduce their impact. An accurate, automated, and reliable detection algorithm is required to develop and evaluate contrail avoidance strategies. Advancement in contrail detection has been severely limited due to several factors, primarily due to a lack of quality-labeled data. Recently, proposed a large human-labeled Landsat-8 contrails dataset. Each contrail is carefully labeled with various inputs in various scenes of Landsat-8 satellite imagery. In this work, we benchmark several popular segmentation models with combinations of different loss functions and encoder backbones. This work is the first to apply state-of-the-art segmentation techniques to detect contrails in low-orbit satellite imagery. Our work can also be used as an open benchmark for contrail segmentation and is publicly available.
translated by 谷歌翻译
Resistive Random-Access Memory (RRAM) is well-suited to accelerate neural network (NN) workloads as RRAM-based Processing-in-Memory (PIM) architectures natively support highly-parallel multiply-accumulate (MAC) operations that form the backbone of most NN workloads. Unfortunately, NN workloads such as transformers require support for non-MAC operations (e.g., softmax) that RRAM cannot provide natively. Consequently, state-of-the-art works either integrate additional digital logic circuits to support the non-MAC operations or offload the non-MAC operations to CPU/GPU, resulting in significant performance and energy efficiency overheads due to data movement. In this work, we propose NEON, a novel compiler optimization to enable the end-to-end execution of the NN workload in RRAM. The key idea of NEON is to transform each non-MAC operation into a lightweight yet highly-accurate neural network. Utilizing neural networks to approximate the non-MAC operations provides two advantages: 1) We can exploit the key strength of RRAM, i.e., highly-parallel MAC operation, to flexibly and efficiently execute non-MAC operations in memory. 2) We can simplify RRAM's microarchitecture by eliminating the additional digital logic circuits while reducing the data movement overheads. Acceleration of the non-MAC operations in memory enables NEON to achieve a 2.28x speedup compared to an idealized digital logic-based RRAM. We analyze the trade-offs associated with the transformation and demonstrate feasible use cases for NEON across different substrates.
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
We investigate how a shepherd should move in order to effectively herd and guide a flock of agents towards a target. Using a detailed agent-based model (ABM) for the members of the flock, we pose and solve an optimization problem for the shepherd that has to simultaneously work to keep the flock cohesive while coercing it towards a prescribed project. We find that three distinct strategies emerge as potential solutions as a function of just two parameters: the ratio of herd size to shepherd repulsion length and the ratio of herd speed to shepherd speed. We term these as: (i) mustering, in which the shepherd circles the herd to ensure compactness, (ii) droving, in which the shepherd chases the herd in a desired direction, and (iii) driving, a hitherto unreported strategy where the flock surrounds a shepherd that drives it from within. A minimal dynamical model for the size, shape and position of the herd captures the effective behavior of the ABM, and further allows us to characterize the different herding strategies in terms of the behavior of the shepherd that librates (mustering), oscillates (droving) or moves steadily (driving). All together, our study yields a simple and intuitive classification of herding strategies that ought to be of general interest in the context of controlling the collective behavior of active matter.
translated by 谷歌翻译