确实,卷积神经网络(CNN)更合适。然而,固定内核大小使传统的CNN太具体,既不灵活也不有利于特征学习,从而影响分类准确性。不同内核大小网络的卷积可以通过捕获更多辨别和相关信息来克服这个问题。鉴于此,所提出的解决方案旨在将3D和2D成立网的核心思想与促进混合方案中的HSIC CNN性能提升。生成的\ Textit {注意融合混合网络}(AFNET)基于三个关注融合的并行混合子网,每个块中的不同内核使用高级功能,以增强最终的地面图。简而言之,AFNET能够选择性地过滤滤除对分类至关重要的辨别特征。与最先进的模型相比,HSI数据集的几次测试为AFNET提供了竞争力的结果。拟议的管道实现,实际上,印度松树的总体准确性为97 \%,博茨瓦纳100 \%,帕尔茨大学,帕维亚中心和萨利纳斯数据集的99 \%。
translated by 谷歌翻译
With the proliferation of AI-enabled software systems in smart manufacturing, the role of such systems moves away from a reactive to a proactive role that provides context-specific support to manufacturing operators. In the frame of the EU funded Teaming.AI project, we identified the monitoring of teaming aspects in human-AI collaboration, the runtime monitoring and validation of ethical policies, and the support for experimentation with data and machine learning algorithms as the most relevant challenges for human-AI teaming in smart manufacturing. Based on these challenges, we developed a reference software architecture based on knowledge graphs, tracking and scene analysis, and components for relational machine learning with a particular focus on its scalability. Our approach uses knowledge graphs to capture productand process specific knowledge in the manufacturing process and to utilize it for relational machine learning. This allows for contextspecific recommendations for actions in the manufacturing process for the optimization of product quality and the prevention of physical harm. The empirical validation of this software architecture will be conducted in cooperation with three large-scale companies in the automotive, energy systems, and precision machining domain. In this paper we discuss the identified challenges for such a reference software architecture, present its preliminary status, and sketch our further research vision in this project.
translated by 谷歌翻译
现在,诸如无人机之类的无人机,从捕获和目标检测的各种目的中,从Ariel Imagery等捕获和目标检测的各种目的很大使用。轻松进入这些小的Ariel车辆到公众可能导致严重的安全威胁。例如,可以通过使用无人机在公共公共场合中混合的间谍来监视关键位置。在手中研究提出了一种改进和高效的深度学习自治系统,可以以极大的精度检测和跟踪非常小的无人机。建议的系统由自定义深度学习模型Tiny Yolov3组成,其中一个非常快速的物体检测模型的口味之一,您只能构建并用于检测一次(YOLO)。物体检测算法将有效地检测无人机。与以前的Yolo版本相比,拟议的架构表现出显着更好的性能。在资源使用和时间复杂性方面观察到改进。使用召回和精度分别为93%和91%的测量来测量性能。
translated by 谷歌翻译
Landslides在人为全球变暖时代的人类生活和财产的常规发生和令人震惊的威胁。利用数据驱动方法早日预测利用数据驱动方法是时间的要求。在这项研究中,我们探讨了最能描述Landslide易感性与最先进的机器学习方法的雄辩功能。在我们的研究中,我们采用了最先进的机器学习算法,包括XGBoost,LR,KNN,SVM,Adaboost用于滑坡敏感性预测。要查找每个单独分类器的最佳超级参数以优化性能,我们已纳入网格搜索方法,交叉验证10倍。在这种情况下,XGBoost的优化版本优先于所有其他分类器,交叉验证加权F1得分为94.62%。其次是通过合并Treeshap并识别斜坡,高度,TWI等雄辩的特征来探索XGBoost分类器,这些特征在于,XGBoost分类器的性能大多是Landuse,NDVI,SPI等功能,这对模型性能较小。 。根据Treeshap的特征说明,我们选择了15个最重要的滑坡因果因素。显然,XGBoost的优化版本随着特征减少40%,在具有十字架的流行评估度量方面表现优于所有其他分类器。 - 在培训和AUC分数的加权F1得分为95.01%,AUC得分为97%。
translated by 谷歌翻译
肺部疾病会导致严重的呼吸问题,如果未及时治疗,导致猝死。许多研究人员利用深度学习系统使用胸部X射线(CXRS)诊断肺疾病。然而,这种系统需要在大规模数据上进行详尽的培训,以有效地诊断胸部异常。此外,采购这种大规模数据通常是不可行的和不切实际的,特别是对于罕见疾病。随着较近的增量学习的进步,研究人员定期调整了深度神经网络,以了解不同的训练示例。虽然,这种系统可以抵抗灾难性的遗忘,但它们彼此独立地对待知识表示,并且这限制了它们的分类性能。此外,据我们所知,没有增量学习驱动的图像诊断框架,专门用于筛选来自CXR的肺部障碍。为了解决这个问题,我们提出了一种新颖的框架,可以学会逐步逐步筛选不同的胸部异常。除此之外,拟议的框架通过增量学习损失函数,即在逐步学习的知识表示之间识别逐步学习知识表示之间的结构和语义互相依赖性,无论扫描仪规格如何,都会识别逐步学习的知识表示之间的结构和语义相互作用。我们在包含不同胸部异常的五个公共CXR数据集上测试了拟议的框架,其中它通过各种指标表现出各种最先进的系统。
translated by 谷歌翻译
筛选行李X射线扫描的筛选杂乱和闭塞违禁品,即使对于专家的安全人员而言,甚至是一个繁琐的任务。本文提出了一种新的策略,其扩展了传统的编码器 - 解码器架构,以执行实例感知分段,并在不使用任何附加子网络或对象检测器的情况下执行违反互斥项的合并实例。编码器 - 解码器网络首先执行传统的语义分割,并检索杂乱的行李物品。然后,该模型在训练期间逐步发展,以识别各个情况,使用显着减少的训练批次。为了避免灾难性的遗忘,一种新颖的客观函数通过保留先前获得的知识来最小化每次迭代中的网络损失,同时通过贝叶斯推断解决其复杂的结构依赖性。对我们两个公开的X射线数据集的框架进行了全面评估,表明它优于最先进的方法,特别是在挑战的杂乱场景中,同时在检测准确性和效率之间实现最佳的权衡。
translated by 谷歌翻译
可穿戴电子设备不断发展,正在增加人类与技术的集成。以各种形式提供,这些灵活和可弯曲的设备感觉,可以测量人体的生理和肌肉变化,并可以将这些信号用于机器控制。Myo手势频带,一个这样的设备,使用磁电信号捕获电拍摄数据(EMG)并将其转换为通过一些预定义手势用作输入信号。在多模态环境中使用此设备不仅可以增加可以在此类设备的帮助下实现的可能类型的工作类型,而且还可以帮助提高所执行任务的准确性。本文解决了通过麦克风和肌电信号捕获的输入模态的融合,分别通过麦克风和Myo带,以控制机器人臂。还提出了所获得的实验结果以及它们的性能分析的准确性。
translated by 谷歌翻译
主动学习在许多领域中展示了数据效率。现有的主动学习算法,特别是在深贝叶斯活动模型的背景下,严重依赖模型的不确定性估计的质量。然而,这种不确定性估计可能会严重偏见,特别是有限和不平衡的培训数据。在本文中,我们建议平衡,贝叶斯深度活跃的学习框架,减轻这种偏差的影响。具体地,平衡采用了一种新的采集功能,该函数利用了等效假设类别捕获的结构,并促进了不同的等价类别之间的分化。直观地,每个等价类包括具有类似预测的深层模型的实例化,并且平衡适应地将等同类的大小调整为学习进展。除了完整顺序设置之外,我们还提出批量平衡 - 顺序算法的泛化算法到批量设置 - 有效地选择批次的培训实施例,这些培训实施例是对模型改进的联合有效的培训实施例。我们展示批量平衡在多个基准数据集上实现了最先进的性能,用于主动学习,并且这两个算法都可以有效地处理通常涉及多级和不平衡数据的逼真挑战。
translated by 谷歌翻译
最近的研究表明了对面部表情合成的多域图像到图像转换的令人印象深刻的结果。虽然有效,但这些方法需要大量标记的样本进行合理的结果。当我们在较小的数据集中训练时,他们的性能显着降低。为了解决这一限制,在这项工作中,我们展示了US-GaN,通过采用显着的小型数据集来合成合理表达的较小有效的方法。所提出的方法包括编码层,单个残差块,解码层和终极跳过连接,其将输入图像链接到输出图像。与最先进的面部表情合成方法相比,参数具有三倍。实验结果表明了我们提出的方法的定量和定性效果。此外,我们还表明,终极跳过连接足以恢复较大的最先进模型无法恢复的输入面部图像的富有的面部和整体颜色细节。
translated by 谷歌翻译
近年来,基于复杂的卷积神经网络架构的越来越复杂的方法一直在缓慢推动良好的基准数据集的性能。在本文中,我们返回返回检查真正需要这种复杂性。我们呈现RC-Net,一个完全卷积的网络,其中每层过滤器数量被优化,以减少特征重叠和复杂性。我们还使用跳过连接来将空间信息丢失保持为最小,通过将网络中的汇集操作保持到最小。在我们的实验中使用了两个公开的视网膜血管分段数据集。在我们的实验中,RC-Net是非常有竞争力的,表现优于替代方案的分割方法,具有两种甚至三个数量级的训练参数。
translated by 谷歌翻译