视频胶囊内窥镜检查是计算机视觉和医学的热门话题。深度学习会对视频胶囊内窥镜技术的未来产生积极影响。它可以提高异常检测率,减少医生的筛查时间并有助于实际临床分析。视频胶囊内窥镜检查的CADX分类系统已显示出进一步改进的巨大希望。例如,检测癌性息肉和出血会导致快速的医疗反应并提高患者的存活率。为此,自动化的CADX系统必须具有较高的吞吐量和不错的精度。在本文中,我们提出了焦距,这是一个与轻量级卷积层集成的焦点调制网络,用于分类小肠解剖学地标和腔内发现。 FocalConvnet利用焦点调制以实现全球环境,并允许在整个正向通行证中进行全局本地空间相互作用。此外,具有固有的感应/学习偏置和提取分层特征的能力的卷积块使我们的焦点concalconvnet能够获得高吞吐量的有利结果。我们将焦点vnet与Kvasir-Capsule上的其他SOTA进行比较,Kvasir-Capsule是一个具有44,228帧的大型VCE数据集,具有13类不同的异常。我们提出的方法分别超过了其他SOTA方法论,加权F1得分,回忆和MCC}分别超过了其他SOTA方法。此外,我们报告了在实时临床环境中建立焦距的148.02图像/秒速率的最高吞吐量。建议的focalConvnet的代码可在https://github.com/noviceman-prog/focalconvnet上获得。
translated by 谷歌翻译