流体流动在自然和工程学科中是无所不在的。由于多种时空尺度上的非线性相互作用,可靠的流体计算是一种持久的挑战。可压缩的Navier-Stokes方程管理可压缩流动,并允许复杂的现象,如湍流和冲击。尽管硬件和软件具有巨大进展,但捕获流体流量的最小长度仍然引入了现实生活应用的禁止计算成本。我们目前目前目睹了对机器学习支持的数字方案设计的范式转变,作为解决上述问题的手段。虽然事先工作已经探索了用于单位或二维不可压缩的流体流量的可微分算法,但是我们向使用高阶状态的数值方法提供了一种用于计算可压缩流体流动的完全可微分的三维框架。首先,我们通过计算经典的二维和三维测试用例来展示我们的解决者的效率,包括强烈的冲击和过渡到湍流。其次,更重要的是,我们的框架允许结束到最终的优化来改进计算流体动力学算法内的现有数值方案。特别是,我们正在使用神经网络来替代传统的数控函数。
translated by 谷歌翻译
作物现场边界有助于映射作物类型,预测产量,并向农民提供现场级分析。近年来,已经看到深深学习的成功应用于划定工业农业系统中的现场边界,但由于(1)需要高分辨率卫星图像的小型字段来解除界限和(2)缺乏(2)缺乏用于模型培训和验证的地面标签。在这项工作中,我们结合了转移学习和弱监督来克服这些挑战,我们展示了在印度的成功方法,我们有效地产生了10,000个新的场地标签。我们最好的型号使用1.5亿分辨率的空中客车现货图像作为投入,预先列进法国界限的最先进的神经网络,以及印度标签上的微调,以实现0.86的联盟(iou)中位数交叉口在印度。如果使用4.8M分辨率的行星扫描图像,最好的模型可以实现0.72的中位数。实验还表明,法国的预训练减少了所需的印度现场标签的数量,以便在数据集较小时尽可能多地实现给定的性能水平。这些发现表明我们的方法是划定当前缺乏现场边界数据集的世界区域中的裁剪领域的可扩展方法。我们公开发布了10,000个标签和描绘模型,以方便社区创建现场边界地图和新方法。
translated by 谷歌翻译
从诸如蛋白质折叠或配体 - 受体结合如蛋白质 - 折叠或配体 - 受体结合等生物分子过程的长时间轨迹的低尺寸表示是基本的重要性和动力学模型,例如Markov建模,这些模型已经证明是有用的,用于描述这些系统的动力学。最近,引入了一种被称为vampnet的无监督机器学习技术,以以端到端的方式学习低维度表示和线性动态模型。 Vampnet基于Markov进程(VAMP)的变分方法,并依赖于神经网络来学习粗粒度的动态。在此贡献中,我们将Vampnet和图形神经网络组合生成端到端的框架,以从长时间的分子动力学轨迹有效地学习高级动态和亚稳态。该方法承载图形表示学习的优点,并使用图形消息传递操作来生成用于VAMPNET中使用的每个数据点以生成粗粒化表示的嵌入。这种类型的分子表示结果导致更高的分辨率和更可接定的Markov模型,而不是标准Vampnet,使得对生物分子过程更详细的动力学研究。我们的GraphVampNet方法也具有注意机制,以找到分类为不同亚稳态的重要残留物。
translated by 谷歌翻译
播客已经出现在大量消耗的在线内容中,特别是由于生产手段的可访问性和通过大型流平台进行缩放分布。分类系统和信息访问技术通常使用主题作为组织或导航播客集合的主要方式。然而,用主题注释播客仍然是非常有问题的,因为分配的编辑类型是广泛的,异构或误导性的,或者因为数据挑战(例如,MetaData文本短,嘈杂的成绩单)。在这里,我们使用主题建模技术来评估从播客元数据,标题和描述中发现相关主题的可行性。我们还提出了一种新的策略来利用命名实体(NES),通常存在于播客元数据中,以非负矩阵分解(NMF)主题建模框架。我们在Spotify和iTunes和Deezer中的两个现有数据集的实验,该数据来自提供播客目录的新数据集,显示我们所提出的文档表示Neice,导致基于基线的主题连贯性。我们释放了结果的实验​​性再现性的代码。
translated by 谷歌翻译
本文详细说明了实际确保远程赛车赛车的安全性的理论和实施。我们在超过100公里/小时的速度上展示了7“赛车无人机的强大和实用性保证,仅在10克微控制器上仅使用在线计算。为了实现这一目标,我们利用了控制屏障功能的框架(CBFS)保证安全编码为前向集不变性。为了使该方法实际上是适用的,我们介绍了一个隐式定义的CBF,它利用备份控制器来实现可确保安全性的渐变评估。应用于硬件的方法,这是平滑,最微不足道的改变飞行员的所需输入,使他们能够在不担心崩溃的情况下推动他们的无人机的极限。此外,该方法与预先存在的飞行控制器配合工作,导致在没有附近的安全风险时不妨碍飞行。额外的效益包括安全性和稳定性在失去视线或在无线电故障时失去时的无人机。
translated by 谷歌翻译
适当地识别和处理具有显着多参考(MR)特征的分子和材料对于在虚拟高通量筛选(VHT)中实现高数据保真度至关重要。然而,使用单一功能的近似密度泛函理论(DFT)进行大多数VHT。尽管发展了许多MR诊断,但这种诊断的单一价值的程度表明了对化学性质预测的MR效应不是很好的。我们评估超过10,000个过渡金属配合物(TMC)的MR诊断方法,并与有机分子中的那些进行比较。我们透露,只有一些MR诊断程序可在这些材料空间上转移。通过研究MR特征对涉及多个潜在能量表面的化学性质(即,MR效应)的影响(即绝热自旋分裂,$ \ DELTA E_ \ MATHRM {HL} $和电离潜力,IP),我们观察到这一点先生效应的取消超过积累。 MR特征的差异比预测物业预测中MR效应的先生特征的总程度更重要。通过这种观察,我们建立转移学习模型,直接预测CCSD(T)-Level绝热$ \ Delta e_ \ Mathrm {H-L} $和IP从较低的理论。通过将这些模型与不确定量化和多级建模相结合,我们引入了一种多管策略,可将数据采集加速至少三个,同时实现鲁棒VHT的化学精度(即1 kcal / mol)。
translated by 谷歌翻译
域适应(DA)最近在医学影像社区提出了强烈的兴趣。虽然已经提出了大量DA技术进行了用于图像分割,但大多数这些技术已经在私有数据集或小公共可用数据集上验证。此外,这些数据集主要解决了单级问题。为了解决这些限制,与第24届医学图像计算和计算机辅助干预(Miccai 2021)结合第24届国际会议组织交叉模态域适应(Crossmoda)挑战。 Crossmoda是无监督跨型号DA的第一个大型和多级基准。挑战的目标是分割参与前庭施瓦新瘤(VS)的后续和治疗规划的两个关键脑结构:VS和Cochleas。目前,使用对比度增强的T1(CET1)MRI进行VS患者的诊断和监测。然而,使用诸如高分辨率T2(HRT2)MRI的非对比度序列越来越感兴趣。因此,我们创建了一个无人监督的跨模型分段基准。训练集提供注释CET1(n = 105)和未配对的非注释的HRT2(n = 105)。目的是在测试集中提供的HRT2上自动对HRT2进行单侧VS和双侧耳蜗分割(n = 137)。共有16支球队提交了评估阶段的算法。顶级履行团队达成的表现水平非常高(最佳中位数骰子 - vs:88.4%; Cochleas:85.7%)并接近完全监督(中位数骰子 - vs:92.5%;耳蜗:87.7%)。所有顶级执行方法都使用图像到图像转换方法将源域图像转换为伪目标域图像。然后使用这些生成的图像和为源图像提供的手动注释进行培训分割网络。
translated by 谷歌翻译
由于其对金融服务,保险和医疗保健等许多行业的自动化业务工作流程的潜在影响,自动化信息提取的信息从格式的信息提取是一种压迫需求。关键挑战是这些业务工作流中的形式类似的文件可以在很多无限的方式下放出;因此,对此问题的良好解决方案应该概括到具有看不见的布局和语言的文档。此问题的解决方案需要对文档中的文本段和视觉提示的全面了解,这是非微不足道的。虽然自然语言处理和计算机视觉社区开始解决这个问题,但在(1)数据效率上没有大量关注(2)跨越不同文档类型和语言的能力。在本文中,我们认为,当我们只有少量标记的培训文件(〜50)时,从相当大的结构不同的较大标记的语料库中的简单转移学习方法产生高达27 f1点的改进,即在简单的训练上目标域中的小语料库。我们通过简单的多域转移学习方法改进了这一点,目前正在生产使用中,并表明这达到了8个F1点的改进。我们使数据效率至关重要,使信息提取系统能够扩展以处理数百种不同的文档类型,并且学习良好的表示对于实现这一目标是至关重要的。
translated by 谷歌翻译
通过卫星摄像机获取关于地球表面的大面积的信息使我们能够看到远远超过我们在地面上看到的更多。这有助于我们在检测和监测土地使用模式,大气条件,森林覆盖和许多非上市方面的地区的物理特征。所获得的图像不仅跟踪连续的自然现象,而且对解决严重森林砍伐的全球挑战也至关重要。其中亚马逊盆地每年占最大份额。适当的数据分析将有助于利用可持续健康的氛围来限制对生态系统和生物多样性的不利影响。本报告旨在通过不同的机器学习和优越的深度学习模型用大气和各种陆地覆盖或土地使用亚马逊雨林的卫星图像芯片。评估是基于F2度量完成的,而用于损耗函数,我们都有S形跨熵以及Softmax交叉熵。在使用预先训练的ImageNet架构中仅提取功能之后,图像被间接馈送到机器学习分类器。鉴于深度学习模型,通过传输学习使用微调Imagenet预训练模型的集合。到目前为止,我们的最佳分数与F2度量为0.927。
translated by 谷歌翻译
口语识别(SLR)是指用于确定语音样本中存在的语言的自动进程。例如,SLR是一个重要的任务,例如,作为分析或分类大量多语言数据的工具。此外,它也是用于在工作流中选择下游应用的必要工具,例如,选择适当的语音识别或机器转换模型。 SLR系统通常由两个阶段组成,其中提取表示音频样本的嵌入的一个阶段,并且第二个是计算每种语言的最终分数的次数。在这项工作中,我们将SLR任务接近作为检测问题,并实现第二阶段作为概率线性判别分析(PLDA)模型。我们表明,对PLDA参数的鉴别性培训相对于通常的生成培训提供了大的收益。此外,我们提出了一种新的分层方法是训练了两个PLDA模型,一个是生成高度相关语言的集群的分数,以及第二个是为每个群集产生分数的分数。最终的语言检测分数被计算为这两种分数的组合。完整的模型判别训练,以优化跨熵目标。我们表明,该层次方法始终如一地优于非等级化,以检测高度相关的语言,在许多情况下大幅度的边缘。我们培训我们的系统在包含100种语言的数据集合中,并在匹配和不匹配的条件下测试它们,表明增益是强大的状态不匹配。
translated by 谷歌翻译