We present a simple approach which can turn a ViT encoder into an efficient video model, which can seamlessly work with both image and video inputs. By sparsely sampling the inputs, the model is able to do training and inference from both inputs. The model is easily scalable and can be adapted to large-scale pre-trained ViTs without requiring full finetuning. The model achieves SOTA results and the code will be open-sourced.
translated by 谷歌翻译
We present an effective method for fusing visual-and-language representations for several question answering tasks including visual question answering and visual entailment. In contrast to prior works that concatenate unimodal representations or use only cross-attention, we compose multimodal representations via channel fusion. By fusing on the channels, the model is able to more effectively align the tokens compared to standard methods. These multimodal representations, which we call compound tokens are generated with cross-attention transformer layers. First, vision tokens are used as queries to retrieve compatible text tokens through cross-attention. We then chain the vision tokens and the queried text tokens along the channel dimension. We call the resulting representations compound tokens. A second group of compound tokens are generated using an analogous process where the text tokens serve as queries to the cross-attention layer. We concatenate all the compound tokens for further processing with multimodal encoder. We demonstrate the effectiveness of compound tokens using an encoder-decoder vision-language model trained end-to-end in the open-vocabulary setting. Compound Tokens achieve highly competitive performance across a range of question answering tasks including GQA, VQA2.0, and SNLI-VE.
translated by 谷歌翻译
有效的缩放和灵活的任务接口使大型语言模型能够在许多任务中表现出色。帕利(Pali)根据视觉和文本输入生成文本,并使用该界面以许多语言执行许多视觉,语言和多模式任务。为了训练帕利,我们利用了大型的编码器语言模型和视觉变压器(VITS)。这使我们能够利用其现有能力,并利用培训它们的大量成本。我们发现,视觉和语言组成部分的联合缩放很重要。由于现有的语言变压器比其视觉对应物要大得多,因此我们训练迄今为止最大的VIT(VIT-E),以量化甚至大容量视觉模型的好处。为了训练Pali,我们基于一个新的图像文本训练集,其中包含10B图像和文本,以100多种语言来创建大型的多语言组合。帕利(Pali)在多个视觉和语言任务(例如字幕,视觉问题,索方式,场景文本理解)中实现了最新的,同时保留了简单,模块化和可扩展的设计。
translated by 谷歌翻译
我们为视觉和语言变压器模型提供了一种预训练方法,该方法基于各种任务的混合。我们探索了在预训练中使用图像文本字幕数据的使用,这不需要其他监督,以及对象感知的策略来预先培训模型。我们评估了许多文本式视觉+语言任务的方法,例如视觉问题答案,视觉范围和字幕,并证明了对标准预训练方法的巨大收益。
translated by 谷歌翻译
视频问题回答是一项具有挑战性的任务,需要共同理解语言输入,单个视频帧中的视觉信息以及视频中发生的事件的时间信息。在本文中,我们提出了一种新颖的多流视频编码器,用于视频问题回答,它使用多个视频输入和一种新的视频文本迭代迭代式共同指定方法来回答与视频相关的各种问题。我们在几个数据集上进行了实验评估该模型,例如MSRVTT-QA,MSVD-QA,IVQA,超过了大幅度的先前最新时间。同时,我们的模型将所需的Gflops从150-360减少到只有67,从而产生了高效的视频答案模型。
translated by 谷歌翻译
We present Answer-Me, a task-aware multi-task framework which unifies a variety of question answering tasks, such as, visual question answering, visual entailment, visual reasoning. In contrast to previous works using contrastive or generative captioning training, we propose a novel and simple recipe to pre-train a vision-language joint model, which is multi-task as well. The pre-training uses only noisy image captioning data, and is formulated to use the entire architecture end-to-end with both a strong language encoder and decoder. Our results show state-of-the-art performance, zero-shot generalization, robustness to forgetting, and competitive single-task results across a variety of question answering tasks. Our multi-task mixture training learns from tasks of various question intents and thus generalizes better, including on zero-shot vision-language tasks. We conduct experiments in the challenging multi-task and open-vocabulary settings and across a variety of datasets and tasks, such as VQA2.0, SNLI-VE, NLVR2, GQA. We observe that the proposed approach is able to generalize to unseen tasks and that more diverse mixtures lead to higher accuracy in both known and novel tasks.
translated by 谷歌翻译
我们提出了Findit,这是一个简单而多功能的框架,统一了各种视觉接地和本地化任务,包括引用表达理解,基于文本的本地化和对象检测。我们体系结构的关键是一个有效的多尺度融合模块,该模块统一了整个任务中不同的本地化要求。此外,我们发现标准对象检测器在统一这些任务的无需特定任务设计,损失或预计算检测方面非常有效。我们的端到端可训练框架灵活,准确地响应了零,一个或多个对象的广泛的参考表达,本地化或检测查询。在这些任务上进行了共同培训,发现在引用表达和基于文本的本地化方面,胜过最高的艺术状态,并在对象检测中表现出竞争性的性能。最后,与强大的单任务基准相比,Findit可以更好地推广到分布数据和新型类别。所有这些都是通过一个单一的,统一和有效的模型来完成的。代码将发布。
translated by 谷歌翻译
在本文中,我们介绍了一种新颖的视觉表示学习,它依赖于少数自适应地学习令牌,并且适用于图像和视频理解任务。而不是依靠手工设计的分割策略来获得视觉令牌并处理大量密集采样的补丁进行关注,我们的方法学会在视觉数据中挖掘重要令牌。这导致有效且有效地找到一些重要的视觉令牌,并且可以在这些令牌之间进行成像注意,在更长的视频的时间范围内,或图像中的空间内容。我们的实验表现出对图像和视频识别任务的几个具有挑战性的基准的强烈性能。重要的是,由于我们的令牌适应性,我们在显着减少的计算金额下实现竞争结果。在计算上更有效的同时,我们获得了对想象成的最先进结果的可比结果。我们在多个视频数据集中建立新的最先进的,包括动力学-400,动力学-600,Charades和Avid。代码可在:https://github.com/google-research/scenic/tree/main/scenic/projects/token_learner
translated by 谷歌翻译
We present Muse, a text-to-image Transformer model that achieves state-of-the-art image generation performance while being significantly more efficient than diffusion or autoregressive models. Muse is trained on a masked modeling task in discrete token space: given the text embedding extracted from a pre-trained large language model (LLM), Muse is trained to predict randomly masked image tokens. Compared to pixel-space diffusion models, such as Imagen and DALL-E 2, Muse is significantly more efficient due to the use of discrete tokens and requiring fewer sampling iterations; compared to autoregressive models, such as Parti, Muse is more efficient due to the use of parallel decoding. The use of a pre-trained LLM enables fine-grained language understanding, translating to high-fidelity image generation and the understanding of visual concepts such as objects, their spatial relationships, pose, cardinality etc. Our 900M parameter model achieves a new SOTA on CC3M, with an FID score of 6.06. The Muse 3B parameter model achieves an FID of 7.88 on zero-shot COCO evaluation, along with a CLIP score of 0.32. Muse also directly enables a number of image editing applications without the need to fine-tune or invert the model: inpainting, outpainting, and mask-free editing. More results are available at https://muse-model.github.io
translated by 谷歌翻译